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Abstract
This research implemented the cubic function f(x) = 3(x3 − x2 − x) + 2 using a Fixed-
Point Iteration to produce several iteration functions that can be used as random number
generator. The test results obtain six iteration functions, and based on graphic visualization
with Scatter plot and randomness test with mono bit test, bit block, and run test, the results
only obtain two iteration functions namely x2 − 1+ 2/(3x) and f(x) = 1+ 1/x− 2/(3x2)
which can produce CSPRNG Chaos-based random number. Encryption testing shows that
both functions can generate keys that make plaintext and ciphertext statistically unrelated, so
the f(x) = 1 + 1/x − 2/(3x2) function can be used as a CSPNRG chaos-based random
number generator function.

Keywords: f(x) = 3(x3 − x2 − x) + 2, Fixed Point Iteration, CSPRNG Chaos.

Abstrak
Penelitian ini mengimplementasi fungsi Kubik f(x) = 3(x3 − x2 − x) + 2 menggunakan
Fixed Point Iteration untuk menghasilkan beberapa fungsi iterasi yang dapat dijadikan sebagai
pembangkit bilangan acak. Hasil pengujian diperoleh enam fungsi iterasi, dan berdasarkan
visualisasi grafik dengan Scatter plot dan uji keacakan dengan uji mono bit, blok bit, dan
uji run diperoleh hanya dua fungsi iterasi yaitu x2 − 1 + 2/(3x) dan f(x) = 1 + 1/x −
2/(3x2) yang dapat menghasilkan bilangan acak berbasis CSPRNG Chaos. Pengujian enkripsi
menunjukkan kedua fungsi pembangkit dapat menghasilkan kunci yang membuat plainteks
dan cipherteks tidak berhubungan secara statistik, sehingga fungsi f(x) = 1+1/x−2/(3x2)
dapat digunakan sebagai fungsi pembangkit bilangan acak berbasis CSPNRG chaos.

Kata Kunci: f(x) = 3(x3 − x2 − x) + 2, Fixed Point Iteration, CSPRNG Chaos.

I. INTRODUCTION

KEY is an important information in cryptography or information (data) security, which key must
be confidential and cannot be known by unauthorized parties. Apart from being secret, key also

needs to have several advantages, for example having a random nature and its periodic entries are
longer than entries taken as key. These important things are the basis for cryptographers to design key
generation algorithms. Many methods are used to generate good keys, one of which is to use a random
number generator function based on the Cryptography Secure Pseudo Random Number Generator Chaos
(CSPRNG chaos). This method usually uses a function as a generator and the output of each iteration is
a collection of random numbers.

The logistical function f(x) = rx(1−x) or in the iterative form xi+1 = rxi(1−xi), is an example of
a generator function that has a CSPRNG Chaos basis. This function can generate random numbers with
long periodic entries, besides changing the value of x0 as an initialization will have a big effect on all
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iteration values. This is what makes the logistic function widely used as a key generator in cryptographic
algorithms [1] [2].

Algebraically, logistic function is a form of the second degree polynomial, and the research [3] has
developed grade-1, degree-2, and degree-3 polynomials which have the possibility of being used as
generator functions. By specifically looking at degree-3 function, the research [3] uses the function
f(x) = x3 + 6x2 + 19x− 20 as a generator function.
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Fig. 1: Comparison of Two Quadratic Functions

This research is searching for other degree-3 polynomial functions to serve as the generator function.
A trial-and-error process is used with a coefficient simulation a; b; c; d from ax3 + bx2 + cx + d in
the interval [0, 10], the function f(x) = (x3 + x2 + x) + 2 is obtained which it can generate several
iteration functions and can be used as a function generator. On the other hand, visually the function
f(x) = (x3 + x2 + x)+ 2 has a different curve with the function f(x) = x3 +6x2 +19x− 20. This can
be seen in the slope of the function given in Figure 1. Thus, the two functions will result significantly
different values.

This research uses a Fixed Point Iteration (FPI) to change a function into several functions of iteration
which can then be used as a CSPRNG Chaos-based random number generator function. Statistical tests
such as Run Test, Monobit, Blockbit are carried out to ensure that each generated sequence of numbers
meets the property of randomness.

II. RELATED RESEARCH

A. Previous Research

Previous researches are needed to see the connection with the research topic that can be used as a
reference for continuation or comparison. Here are some studies related to this research topic.

The research entitled "Regeneration of Polynomial Function in the Design of Chaos CSPRNG-Based
Algorithms" is the first literature review. This research is looking for polynomial function that can
be used as a random number generator. Polynomial functions of degree-1, degree-2, and degree-3 are
used as generating functions. The obtained results: the polynomial function can be used as a generator
function, however, a good selection of constants and coefficients on the function is needed, and algebraic
manipulation dexterity based on FPI is also needed, so that iterative functions can be very important in
generating CSPNRG chaos [3].

The second literature review entitled "Regeneration of Quadratic Functions as Key Generators Based
on the Fixed-Point Iteration Method in Cryptography" discusses the search for other quadratic functions
that can be used as key generators by regenerating using the fixed-point iteration method to be an iteration
function. From the regeneration search results of the quadratic function, it is known that if a quadratic
function has two different real number roots, it has a great chance of being used as a generating function
[4].

The third literature review is the research “Regeneration of f(x) = x2−9x−99 Function as CSRPNG
Chaos-Based Random Number Generator". This research developed the study [1], specifically looking
for other quadratic functions that can be used as random number generators. This is used as a comparison
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and also a reference in finding other polynomial functions, but the difference is that this study uses a
cubic function as the candidate for CSPRNG Chaos-based random number generator function [5].

The research with the title “Finding an Interval Solution for Coefficients and Constants f(x) = x −
(x2 − 3)/176 as a Random Number Generating Function" becomes the fourth literature study. Research
[6] continues the research [3] by selecting the one of function squares that do not produce random
numbers, which the research tries to find the constants and coefficients that can be used to generate
random numbers.

B. Research Authenticity

The current research is different from previous research. Research [3] is used as a reference, in particular
using the fixed-point iteration method as a method for converting a function into an iterative function.
The difference lies in the use of different generator function and additional test methods for generating
functions. Research [3] only uses correlation tests and graphic visualization. This research adds a random
number testing method in the form of run test method, mono bit, and bit block.

Research [4] also does the same thing as research [3], but it only focuses on the quadratic function.
The research found several new quadratic functions which can be developed into a CSPRNG Chaos-based
random number generator function. Research [5] and research [6] try to develop a special function of
degree-2 which can also be used as a random number generating function.

III. RESEARCH METHODS

There are several stages of research method of this research as shown in Figure 2. Each stage is the
flow of the research plan that leads the research problems to the research objectives.

The research stages can be explained as follows: The first stage is problem identification, which at this
stage, an analysis of the existing problem is carried out and an initial mind frame is created. Problem
identification is carried out to see cryptographic problems that will become a reference for research. A
literature study is carried out to obtain literatures and theories related to CSPRNG Chaos-based random
number generator using polynomial functions. The second stage is the research planning which contains
each process that is required in generating random numbers.

Problem Identification &
Literature Study

Research
Planning

Research Implementation
(Algorithm Planning)

Result, Testing & Analysis

Report Writing

Fig. 2: Schematic of the Research Flow

In the third stage, an algorithm design is made, starting with algebraic manipulation of the selected
polynomial function to look for a function that can be a random number generator. The fourth stage is
the testing of the research results, especially statistical testing using methods of Run Test, Monobyte,
Blockbyte. The fifth stage is report writing to explains the results of the research.
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IV. RESULTS AND DISCUSSIONS

A. Research Design

The 3-degree polynomial function f(x) = 3x3 − 3x2 − 3x + 2 is chosen to perform the search for
random generator function as shown in Figure 2. The selected function will go through an algebraic
manipulation process using the FPI method that will produce several iteration functions to obtain output
in the form of numbers that can be used as keys. Each sequence of the generated numbers using the FPI
method will go to the stage of statistical testing.

Degree-3 Polynomial
is Chosen

f(x) = 3x3 − 3x2 − 3x + 2

Search of
Iteration Function

(FPI Method)

Scatter Plot
Testing

Random Test:
Mono Bit
Block Bit
Run Test

CSPRNG Chaos
Based

Random Number

Fig. 3: General Schematic of Random Number Search

Each output from FPI experiences a chaotic condition when viewed visually based on the distribution
of numbers using a scatter plot at Cartesian coordinates, where iteration as the abscissa and ordinate is
the results of iteration. A function is called a generator if the scatter plot graph is broken and does not
facilitate guessing. On the other hand, if function of each iteration result appears to form a pattern, easy
to guess and not broken, the function has failed as a generator function.

B. Iteration Function Search

The process of finding an iterative function is carried out by paying attention to the variables of the
function, then a fixed-point iteration process is carried out to obtain a candidate for the generator function.
Function f(x) = 3x3 − 3x2 − 3x+ 2 has a complete coefficient for each degree of the polynomial. The
search for the first iterative function will be carried out starting from the 1st degree variable. Based on
TIP method, the ratio f(x) = 0, is known so that the algebraic manipulation process can be carried out
as shown in Equation 1.

3x3 − 3x2 − 3x+ 2 = 0

3x = 3x3 − 3x2 + 2

x = x3 − x2 + 2/3

(1)

in iteration form:
xi+1 = x3i − x2i + 2/3 (2)

The next iteration function is generated based on degree-2 and degree-3 variables. By using TIP method
and carrying out the same process as in Equation 1, two iteration functions of the degree-2 variable and
three iteration functions of the degree-3 variable are obtained. Complete results are given in Table I.

TABLE I: Iteration Function Search

Function Polynomic Degree Fixed-Point Iteration Iteration Function
function 1 degree-1 x = x3 − x2 + 2

3
xi+1 = x3

i − x2
i + 2

3

function 2 degree-2 x = x2 − 1 + 2
3x

xi+1 = x2
i − 1 + 2

3xi

function 3 degree-2 x =
√

x3 − x+ 2
3

xi+1 =
√

x3
i − xi +

2
3

function 4 degree-3 x = 1 + 1
x
− 2

3x2 xi+1 = 1 + 1
xi

− 2
3x2

i

function 5 degree-3 x =
√

x+ 1− 2
3x

xi+1 =
√

xi + 1− 2
3xi

function 6 degree-3 x = 3
√

3x2+3x−2
3

xi+1 =
3
√

3x2
i+3xi−2

3

The determination of generator function is carried out based on the geometric expression using Scater
plot [1]. The initial value x0 is used as the initial value to get the results of the next iteration. Therefore,
each iteration function in Table I will use the initialization x0 = 0.024988457987 as the initial test [1],
then a search for the value of x0 is carried out to find other random numbers.

Yopeng et al.
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C. Function 1; xi+1 = x3i − x2i +
2
3

The iteration results are in 15 digits so it is possible to retrieve five data to be used as keys. Taking
numbers in Mantissa based on the 1st, 2nd, and 3rd sequences is called data 1, while the taking in the
4th, 5th, and 6th sequences is called data 2, and so on for data 3, data 4 and up to data 5 for retrieval on
13th, 14th, and 15th sequences. Table 2 shows how to retrieve the integer from Mantissa, in the iteration
function xi+1 = x3i − x2i +

2
3 .

The search for the iteration process uses Function 1, with initialization x0 = 0.024988457987, the first
seven iterations are obtained as shown in Table II. Five sets of numbers are taken which are consecutively
designated as num-1, num-2, num-3, num-4, and num-5. Each set of number is viewed by column, which
is a candidate for random number. and which can be used as a key in cryptography if it meets visualization
tests and some statistical tests.

TABLE II: Results of the iteration xi+1 = x3
i − x2

i +
2
3

i xi num-1 num-2 num-3 num-4 num-5
1 −0.87233333333333 0.87 233 333 333 333
2 −0.75811430048148 0.75 811 430 048 148
3 −0.34378718646378 0.34 378 718 646 378
4 0.507844956868619 507 844 956 868 619
5 0.539736681928056 539 736 681 928 056
6 0.532584742505241 532 584 742 505 241
7 0.534085961116021 534 085 961 116 021
...

...
...

...
...

...
...

Visualization is made using a Cartesian diagram as the simplest test and carried out to determine
whether the function xi+1 = x3i −x2i + 2

3 with the x0 initialization will be able to produce chaotic output
or not. The test results using x0 = 0.024988457987 give results that are not chaotic, and even produce
a pattern in the form of a straight line. Similar results are also obtained for numbers-1, numbers-2,
numbers-3, numbers-4, numbers-5 forming a straight-line pattern, although some of the iterations at the
beginning form a random number. This requires searching for another x0 value, which has the possibility
of producing a random number.
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Fig. 4: Results of the First 200 Iterations of the Function xi+1 = x3
i − x2

i +
2
3

The search for different x0 initialization value needs to be done to determine the domain interval in
function 1. The graph in Figure 4 is the comparison between the value of x0 and the number of different
values generated in the first 200 iterations. The test is carried out using the degree of accuracy of 10−8,
which the function xi+1 = x3i − x2i +

2
3 can only be used if −0, 90848291 ≤ x0 ≤ 1, 37465999.
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Fig. 5: Input of x0 to the function xi+1 = x3
i − x2

i +
2
3

The highest number of different numbers produced by the function xi+1 = x3i−x2i+ 2
3 only 37 numbers,

when x0 = −0.90848291. For other values of x0 in the interval −0.90848291 ≤ x0 ≤ 1.37465999 results
in different values lesser than 37. Thus, the function xi+1 = x3i − x2i +

2
3 cannot be used as a random

number generator function.

D. Function 2; xn+1 = x2i−1 − 1 + 2
3xi−1

The iteration results of the function xi = x2i−1 − 1 + 2
3xi−1

can produce two graphs. This is a
good starting condition because cutting the Mantissa will produce some random numbers. Numbers-
1 and numbers-2 only produce a few random numbers, although they still produce patterned numbers.
Numbers-3, numbers-4, and numbers-5 succeed in generating random numbers based on CSPRNG Chaos
for the first 200 iterations.
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Fig. 6: First 200 Iterations of Scatter Plot for Function xi = x2
i−1 − 1 + 2

3xi−1

The domain interval for function 2 is shown in Figure 7, using the degree of accuracy of 10−3, the
interval is 1.84712708. ≤ x0 ≤ 1.17999999. The first 200 iterations can generate 200 different numbers.
Thus xi = x2i−1−1+ 2

3xi−1
can be used as a CSPRNG Chaos-based random number generator function.

−1 −0.5 0 0.5 1 1.5
0

50

100

150

200

x0

di
ffe

re
nt

va
lu

e

Fig. 7: Input x0 in function xi = x2
i−1 − 1 + 2

3xi−1
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E. Function 3; xi+1 =
√
x3i − xi +

2
3

The iteration result a pattern forming a straight line. The randomness test is needed to see statistically
satisfactory randomness. The same results are obtained for numbers-1, numbers-2, numbers-3, numbers-4,
and numbers-5. The complete results for the first 200 iterations are shown in Figure 8.
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Fig. 8: Scatter Plot 200 for the First Iteration of Function xi+1 =
√

x3
i − xi +

2
3

The search for different values of x0 initialization obtains a domain interval −1, 23999999 ≤ x0 ≤
1, 34766105 which can produce several different numbers. The graph in Figure 9 is a comparison between
the value of x0 and the number of different values generated in the first 200 iterations. By using the
degree of 10−3 accuracy, the highest difference value is 24 when x0 = 1.34766105.
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Fig. 9: Input x0 to the Function xi+1 =
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F. Function 4; xn+1 = 1 + 1
x − 2

3x2

The iteration results of the function x = 1 + 1
x − 2

3x2 for the first 200 iterations are shown in Figure
10. The results for numbers-4 and number-5 can produce random numbers based on CSPNRG Chaos.
Meanwhile number-1, number-2, and number-3 have not succeeded in generating 200 random numbers.
So that x = 1 + 1

x − 2
3x2 can be used as a generator function.
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Fig. 10: Results of the First 200 Iterations of the Function xn+1 = 1 + 1
x
− 2

3x2

A degree of 10−8, accuracy is used, and the domain search for x0 initialization interval can produce a
solution is −1, 87328412 ≤ x ≤ 0, 84486170. Figure 11 shows the number of different values generated
based on x0 input in the first 200 iterations.
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Fig. 11: Input x0 in function xn+1 = 1 + 1
x
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Thus, the function xn+1 = 1 + 1
x − 2

3x2 can generate random numbers based on CSPRNG Chaos,
especially in using Mantissa for number-4 and number-5.

G. Function 5; xn+1 =
√
x+ 1− 2

3x

Function x =
√
x+ 1− 2

3x on x0is one of the results of algebraic manipulation based on the 3-degree
polynomial of f(x) = 3x3 − 3x2 − 3x+ 2, and becomes the second function in the form of the square
root. The results in the first seven iterations are shown in Table III.

TABLE III: Data 7 First Iterations of Function xn+1 =
√

x+ 1− 2
3x

i xi num-1 num-2 num-3 num-4 num-5
1 0.000057735025461546000 0 57 735 25 461
2 1.000009622457950000000 0 9 622 457 95
3 1.154701927260590000000 154 701 927 260 59
4 1.176818015846200000000 176 818 15 846 2
5 1.179946046202420000000 179 946 46 202 42
6 1.180387795910370000000 180 387 795 910 37
7 1.180450167790570000000 180 450 167 790 57
...

...
...

...
...

...
...

The process for the first 200 iterations of function xn+1 =
√
x+ 1− 2

3x is shown in Figure 12. The
iteration function and each extract of the Mantissa that uses the truncation function in the number-i,
where i = 1, · · · , 5 also do not create a random number.

Yopeng et al.
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Fig. 12: Results of the First 200 Iterations of the Function xn+1 =
√

x+ 1− 2
3x

It is necessary to look for different initialization of x0 value to determine the function domain interval.
The graph in Figure 13 shows a comparison between the value of x0 with a number of different values
generated in the first 200 iterations. The obtained number of different values are only 39 for x0 =

1, 37466105. Thus, it can be concluded that the function xn+1 =
√
x+ 1− 2

3x cannot be used as a
CSPRNG Chaos-based random number generator function.
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H. Function 6; xi+1 =
3

√
3x2

i+3xi−2

3

Function 6 is the only function that has a power root of 3. The results of the first seven iterations
are shown in Table IV, which the iteration results are increasing too quickly, the acquisition of Mantissa
values becomes uncontrollable, and the random number search from Mantissa cannot be performed. So

that the function xi+1 =
3

√
3x2

i+3xi−2

3 cannot be used as a random number generator function.

TABLE IV: Data of the First 7 Iterations of the Function xi+1 =
3

√
3x2

i+3xi−2

3

i xi num-1 num-2 num-3 num-4 num-5
1 −1, 86672254870127 0,86 672 254 870 127
2 3, 467069026684220 467 069 026 684 220
3 45, 07618743873060 - - - - -
4 116436076, 112202× 107 - - - - -
5 496265422834181× 1019 - - - - -
6 163764525704569× 10122 - - - - -
7 804564596377273× 10258 - - - - -
...

...
...

...
...

...
...
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I. Randomness Testing

The iteration function that visually creates chaos are function 2; xi+1 = x2i − 1 + 2
3xi

and function
4; xi+1 = 1 + 1

xi
− 2

3x2
i

. This section determines whether each function can generate random numbers,
so that it can then be used as a random number generator function. As a result, both functions will be
tested for random numbers using mono-bit test, bit block, and also run test.

The value of randomness test α = 1% is used for the three test methods. Thus, if p-value < 0,01, the
number is declared as not random, and if p-value ≥ 0, 01, it is declared as random. Determination of
test results for a set of numbers is determined by two or three tests that contain p-value ≥ 0, 01. The
test results for the two functions are shown in Table V and Table VI, respectively.

TABLE V: Randomness Test of the Function xi+1 = x2
i − 1 + 2

3xi

No Tested Data p-value Testing ResultMono Bit Block Bit Run-Test
1 Numbers-1 0,0041 0,0072 0,0083 not random
2 Numbers-2 0,0007 0.0077 0,0042 not random
3 Numbers-3 0,1204 0,0022 0.4998 random
4 Numbers-4 0,4950 0,1217 0.4969 random
5 Numbers-5 0,1626 0,2680 0.4954 random

The statistical test results for the function xi+1 = x2i − 1 + 2
3xi

are similar to the results of the
visualization test using the Scatter Plot, because only numbers-1 and numbers-2 that do not produce
random number. In numbers-3, the p-value for the bit block test is unreachable, but the other two tests
are reachable, so it is categorized as random. While numbers-3, numbers-4, and numbers-5 in the three
tests, the p-value is obtained that meet the randomness category.

TABLE VI: Randomness Test of the Function xi+1 = 1 + 1
xi

− 2
3x2

i

No Tested Data p-value Testing ResultMono Bit Block Bit Run-Test
1 Numbers-1 0,0042 0,0073 0,0064 not random
2 Numbers-2 0,0014 0,0045 0,0082 not random
3 Numbers-3 0,0072 0,0144 0,0012 not random
4 Numbers-4 0,7684 0,0273 0.5039 random
5 Numbers-5 0,8875 0,1013 0.4971 random

The visualization test for the function xi+1 = 1+ 1
xi

− 2
3x2

i
is shown in Figure 10, which it is clear that

in the first 200 iterations, numbers-1, numbers-2, and numbers-3 still have a straight-line pattern even
though the graphs vary widely. In the initial iteration, the function succeeds in producing some number
that appear random, but then form a straight line. A slightly different result occurs for numbers 3, which
the bit block test shows that the p-value is in the random category, even though the two other test methods
give different results. This result occurs because in the first 200 iterations, about 100 numbers appear to
have formed chaos. It makes the bit block test detects the numbers-3 as random.

The obtained results for numbers-4 and numbers-5 for the three tests produce a value greater than the
p-value that meets the randomness requirement. Thus, the function xi+1 = 1 + 1

xi
− 2

3x2
i

only produces
two sets of number which can be used as a CSPRNG chaos-based random number generator.

J. Encryption Testing

The encryption testing is carried out to see numbers-3, numbers-4, and numbers-5 in the function
xi+1 = x2i − 1 + 2

3xi
and numberss-4 and numbers-5 in the function xi+1 = 1 + 1

xi
− 2

3x2
i

as keys
using Equation 3, which plaintext Ek is the encryption process which it uses plaintext (P ), key (K),
dan ciphertext (C).

Ek : P +K = C (mod 256) (3)

Three different plaintexts are used, the hope is that they can represent the variations of plaintext that
the user might use. The first plaintext is “fti uksw” where this sentence represents sn ordinary plaintext
which only consists of a combination of letters or alphabets. The second plaintext is “$aL4tIgA” which
is a combination of number, letter and symbol, and the last plaintext is a plaintext which has the same
letter “zyyyyyyy”.

Yopeng et al.
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Table VII shows the complete results, where the numbers-3, numbers-4, and numbers-5 in the function
xi+1 = x2i − 1 + 2

3xi
which are called as key-1, key-2, and key-3, respectively. While, numbers-4 and

numbers-5 in the function xi+1 = 1 + 1
xi

− 2
3x2

i
are key-4 and key-5.

TABLE VII: Correlation Test Results

No ith key Tested Plaintext Mean Level of Relationshipfti uksw $aL4tIgA zyyyyyyy
1 key-1 0,0349 0,1944 0,0585 0,0585 very low
2 key-2 0,0492 0,2453 0,0801 0,0801 very low
3 key-3 0,2661 0,0322 0,2602 0,2602 low
4 key-4 0,0632 0,1210 0,1793 0,1793 very low
5 key-5 0,0920 0,0118 0,2911 0,2911 low

Correlation test is used as the method to see how well the keys used can disguise plaintexts into
ciphertexts. Each plaintext test is seen as the independent variable (x), and the ciphertext is seen as
the dependent variable (y). Each key will be tested three times, and the mean determines the level of
correlation.

All key tests get good results, which on the average, plaintexts are at very low and low levels. Thus,
each generated key can make plaintext and ciphertext that is not statistically related. Therefore, each key
that is generated can keep the information secret on a plaintext. As a result, the generated key using the
function f(x) = 3(x3 − x2 − x) + 2 can produce five groups of numbers that can be used as keys in
cryptography.

V. CONCLUSION

Function f(x) = 3(x3 − x2 − x) + 2 can produce six iteration functions, and only two, namely
x2 − 1+ 2

3x and 1+ 1
x − 2

3x2 which can be a CSPRNG Chaos-based random number generator function.
Statistical testing using mono bit, block bit, and run test shows that two functions can generate five
random numbers that can be used as keys in cryptography.

The encryption test shows the ability of the generated key from the function f(x) = 3(x3−x2−x)+2
which the results of the correlation test are in "very low" and "low" categories. This shows that the use
of a key with a polynomial function as a generator can make plaintexts and ciphertexts that are not
statistically related.

CSPNRG chaos-based random number can not only be generated using the Lorentz function, but also
regenerated using other polynomial functions such as f(x) = 3(x3−x2−x)+2, and can also be used as
a generator function. It only needs the right x0 initialization simulation, the right selection of coefficients
and constants and also the capability to use the process of algebraic manipulation in the fixed-point
iteration method.
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