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Abstract
This article presents an investigation of asymptotic time complexities of several algorithms
related to Megrelishvili protocol. The analysis are carried out for the private keys computations
and public exchange of values, public key constructions, as well as an elementary exhaustive
search attack algorithm. We show that the complexities of these algorithms are higher than the
complexities of elementary algorithms involved in the conventional Diffie-Hellman protocol
(DHP) or its variant on elliptic curves (ECDHP). Furthermore, we introduce the notion of
Megrelishvili vector-matrix problem as a linear algebraic problem that underlies the security
of this protocol. Finally, we prove that under similar elementary exhaustive search attack
algorithms, the number of scalar calculations required to solve this problem is greater than the
number of scalar calculations required to solve the conventional discrete logarithm problem
(DLP) and elliptic curves discrete logarithm problem (ECDLP). This condition intuitively
implies that Megrelishvili protocol is “more secure” than DHP and ECDHP against exhaustive
search attack.

Keywords: algorithms analysis, asymptotic complexities, Megrelishvili protocol.

Abstrak
Makalah ini menyajikan investigasi terhadap kompleksitas waktu asimtotik untuk beberapa
algoritma yang berkaitan dengan protokol Megrelishvili. Analisis dilakukan pada komputasi
untuk kunci rahasia dan pertukaran nilai-nilai publik, konstruksi kunci publik, serta algoritma
serangan pencarian menyeluruh. Kami menunjukkan bahwa kompleksitas algoritma-algoritma
ini lebih tinggi daripada kompleksitas algoritma-algoritma dasar yang terlibat dalam protokol
Diffie-Hellman konvensional (DHP) atau variannya pada kurva eliptik (ECDHP). Selain itu,
kami memperkenalkan gagasan masalah vektor-matriks Megrelishvili sebagai masalah aljabar
linier yang mendasari keamanan protokol ini. Pada akhirnya, kami membuktikan bahwa de-
ngan serangan pencarian menyeluruh yang serupa, banyaknya kalkulasi skalar yang diperlukan
untuk memecahkan masalah ini lebih besar daripada banyaknya perhitungan skalar yang diper-
lukan dalam menyelesaikan masalah logaritma diskret konvensional (DLP) maupun masalah
logaritma diskret pada kurva eliptik (ECDLP). Kondisi ini secara intuitif mengatakan bahwa
protokol Megrelishvili “lebih aman ”terhadap serangan pencarian menyeluruh dibandingkan
dengan DHP maupun ECDHP.

Kata Kunci: analisis algoritma, kompleksitas asimtotik, protokol Megrelishvili.

I. INTRODUCTION

ONE important purpose of public key cryptosystems is to enable two or more parties to exchange
confidential information via an open channel. This intention has been widely studied since the

discovery and introduction of the Diffie-Hellman key exchange protocol [1]. This protocol has been
broadly used as a building block for many new key exchange algorithms. The original protocol can be
modified to work in arbitrary finite groups. The finite groups can be elliptic curve groups over finite
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fields [2], [3], general linear groups (group of matrices) [4], [5], or symmetric groups [6]. Despite the
variations of the finite groups used in each protocol, the security of these protocols relies on the similar
discrete logarithm problems.

Megrelishvili protocol was first introduced by R. Megrelishvili, M. Chelidze, and K. Chelidze in [7].
Unlike the regular matrix-based Diffie-Hellman protocol, Megrelishvili key exchange algorithm combines
matrix exponentiation and vector-matrix multiplication in its private keys generations. The combination of
these two linear algebraic operations yields a key agreement whose security does not rely on the standard
discrete logarithm problems for finite groups. Albeit its uniqueness, to our knowledge, this relatively new
key exchange scheme has not been widely implemented. One purported reason is because the natural
definition of a matrix multiplication requires at least Ω

(
n2
)

steps of scalar operations [8]. This lower
bound of the number of scalar operations leads to a conjecture that the computational costs to generate
the keys in Megrelishvili protocol are greater than the computational costs required in the typical number
theoretic-based key agreements (e.g. conventional Diffie-Hellman protocol). To answer this conjecture,
we conduct a formal mathematical analysis for several elementary algorithms related to Megrelishvili
protocol.

In this paper, we investigate the asymptotic time complexities for several elementary algorithms
involved in Megrelishvili protocol. To our knowledge, the formal algorithms analysis concerning the
running time of these algorithms has not been studied extensively. For this reason, the objective of this
article is to provide formal mathematical analysis for these elementary algorithms. The analysis are
carried out primarily for the private keys computations, public key construction, and exhaustive search
attack algorithm.

II. MATHEMATICAL PRELIMINARIES

Throughout this paper, we denote a group G together with an operation ∗ in G by the pair (G, ∗).
All groups are written multiplicatively, unless otherwise specified. The order of G, denoted by |G|, is
defined as the cardinality of G. All groups in this paper are assumed to have finite order, i.e. |G| = n for
some integer n. We define the order of g ∈ G, denoted by o (g), as the least positive integer t satisfying
gt = e, where e is the identity element of G. It is a well-known fact in modern algebra that o (g) divides
|G| [9], [10].

Megrelishvili protocol makes use of linear algebraic theory in its public key creation, private keys
calculations, public exchange of values, and shared secret key calculations. The matrices and vector
spaces used in this key agreement are defined over finite fields Fq . We denote the set of all non zero
elements of Fq by F∗q . For example, if q = 3, we have F3 = {0, 1, 2} and F∗3 = {1, 2}. We represent an
n-dimensional vector space over Fq by Fnq , the set of all n× n matrices over Fq by Mn (q), and the set
of all nonsingular n× n matrices over Fq by GLn (q). All vectors are denoted by right-pointing arrow
notation, e.g. ~v, while matrices are denoted by boldface upper-case letters. The vectors are considered
and treated as row vectors, and therefore, the vector-matrix multiplication ~vM is well-defined whenever
~v has n components and M is an n× n matrix.

Given a matrix M ∈ GLn (q), the (multiplicative) order of M, denoted by ord (M), is the the least
positive integer ` such that M` = I, where I is the n×n identity matrix. It is easy to prove that ord (M)
is well-defined if and only if M ∈ GLn (q). Moreover, I. Niven [11] proved that the multiplicative order
of a matrix M ∈ GLn (q) is less than or equal to qn − 1.

Given a finite field Fq , we denote Fq [x] as the polynomial ring {∑n
i=0 αix

i : n ≥ 0 and αi ∈ Fq for
0 ≤ i ≤ n}. The degree of a non zero f (x) ∈ Fq [x], denoted by deg (f), is defined as the exponent
of highest power of x that appears in f (x). A polynomial f (x) is irreducible iff f (x) does not have a
trivial factor (a constant polynomial as a factor); otherwise, it is reducible. A polynomial f (x) ∈ Fq [x]
with deg (f) = d ≥ 1 is called primitive polynomial over Fq if f is the polynomial over Fq of the least
degree such that f (α) = 0 where α is a primitive element of Fqd . Clearly every primitive polynomial is
also irreducible. For more comprehensive theoretical explanation, we refer the reader to [9], [10], [12].
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III. DIFFIE-HELLMAN, ELLIPTIC CURVES DIFFIE-HELLMAN, AND MEGRELISHVILI PROTOCOL

A. Diffie-Hellman and Elliptic Curves Diffie-Hellman Protocol

Most modern cryptosystems are based on mathematical theories. These theories are including, but not
always limited to, number theory, abstract algebra, and linear algebra. Diffie-Hellman key exchange is
a simple procedure that allows two parties to exchange confidential information via an open channel.
Originally, this protocol makes use of finite multiplicative group F∗p [1], [10]. However, theoretically, the
group chosen for the protocol can be any group (G, ∗) written multiplicatively. For example, the elliptic
curves Diffie-Hellman protocol operates on the elliptic curve over finite field Fq , i.e. E (Fq), where q is
a prime power. The group operation used in E (Fq) is the elliptic curve point addition in E (Fq). We
refer the reader to [10] for more extensive theoretical explanation.

In general, Diffie-Hellman key agreement works as follows. Suppose two parties, namely Alice and
Bob, want to exchange a key via an open channel. Initially, both of them need to agree on a finite group
(G, ∗) which is written multiplicatively. They choose an element g ∈ G whose order is maximal in G. In
practice, the value of g is chosen to be a primitive generator of G whenever it is possible. The next step
is for Alice and Bob to choose respectively secret integers α and β, and subsequently compute A = gα

and B = gβ as their corresponding public values. During the public exchange of values, Alice sends
A to Bob whilst Bob sends B to Alice. Finally, Alice computes A′ = Bα and similarly Bob computes
B′ = Aβ . The value A′ and B′ are the shared secret keys. The correctness of Diffie-Hellman protocol
is based on the fact that A′ = Bα = gβα = gαβ = Aβ = B′. The generic step-by-step procedure of this
protocol is illustrated in Table I.

Public parameters creation
A trusted party selects and publishes: a finite group (G, ∗)

and an element g ∈ G whose order is maximal in G.

Private keys generation
Alice Bob

Choose an integer α. Choose an integer β.

Public exchange of values
Compute A = gα.
Alice sends A to Bob.

Compute B = gβ .
Bob sends B to Alice.

Shared secret key computation
Alice Bob

Compute A′ = Ba. Compute B′ = Aβ .
The shared secret key is A′ = B′.

TABLE I: The generic step-by-step illustration of Diffie-Hellman key agreement.

During private keys generations, Alice and Bob respectively compute A = gα and B = gβ . In the
original version of Diffie-Hellman protocol, these values can be computed using fast modular exponen-
tiation procedure in O (logα) and O (log β) steps, respectively, where each step is a scalar operation in
the associated finite field [10]. Using appropriate modification of fast exponentiation algorithm, it is not
difficult to prove that for any integer x, the cost for calculating gx in G is bounded by O (Tm · logα),
where Tm denotes number of steps required to perform one multiplication by g in G.

The security of Diffie-Hellman protocol or its variant on elliptic curves relates to the discrete logarithm
problem (DLP) on the group (G, ∗), that is, the problem of finding an integer x satisfying gx = h for
g, h ∈ G. This problem can be solved using exhaustive search algorithm in O (|G|) steps, where each
step consists of a multiplication by g. For example, the DLP for the conventional Diffie-Hellman protocol
defined over F∗q can be solved in O (q) steps, where each step is scalar multiplication in Fq . Moreover,
since the number of point in the elliptic curve E (Fq) for prime q satisfies E (Fq) = q + 1 − tq where
|tq| ≤ 2

√
q, the discrete logarithm problem in E (Fq) can also be solved in linear steps with respect

to the size of the finite field used [10]. These two facts suggest that the private keys in both DHP or
ECDHP can be obtained using exhaustive search procedure in O (q) steps, where q is the size of the
finite field used in the protocols. However, faster algorithms do exists, such as Shanks’ algorithm and
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Pollard’s ρ algorithm [10].

B. Megrelishvili Protocol

Megrelishvili key exchange protocol was first proposed by R. Megrelishvili, M. Chelidze, and K.
Chelidze in [7]. This protocol is based on an adapted Diffie-Hellman protocol [1] which manipulates
matrix exponentiation and vector-matrix multiplication over finite field. Based on [7], [13]–[15], we
distinguish this protocol into two types. The first type solely uses matrix exponentiation and vector-
matrix multiplication in its private keys computations, public exchange of values, and shared secret key
computations. The second one incorporates matrix addition to the linear algebraic operations used in the
first type. In this paper, we focus our research in the first type protocol.

In the following, we describe Megrelishvili key agreement according to [15]. Suppose two parties,
namely Alice and Bob, want to exchange a key via an open channel. At the beginning, they have to
agree on a finite field Fq , an n × n nonsingular matrix M over Fq , an n-dimensional non zero vector
~v ∈ Fnq . The value of q, n, M, and ~v are public knowledge. For the private keys computations, Alice
and Bob correspondingly choose random (preferably positive) integers α and β and keep them secret,
and separately generate A = Mα and B = Mβ as their personal private matrices. The matrix M is
selected in such a way that ord (M) is sufficiently large. During the public exchange of values, Alice
computes ~a = ~vA and sends ~a to Bob, while Bob computes ~b = ~vB and sends ~b to Alice. Afterward,
Alice and Bob respectively calculate ~a′ = ~bA and ~b′ = ~aB, the vector ~a′ and ~b′ are the shared secret
keys. Observe that AB = Mα+β = Mβ+α = BA, therefore ~a′ = ~bA = ~vBA = ~vAB = ~aB = ~b′. The
protocol is summarized in Table II.

Public parameters creation
A trusted party selects and publishes: a finite field Fq ,

a (large) integer n, an n× n nonsingular matrix M over Fq , and
an n-dimensional non zero vector ~v in Fnq .

Private keys generation
Alice Bob

Choose an integer α.
Calculate A = Mα.

Choose an integer β.
Calculate B = Mβ .

Public exchange of values
Compute ~a = ~vA.
Alice sends ~a to Bob.

Compute ~b = ~vB.
Bob sends ~b to Alice.

Shared secret key computation
Alice Bob

Compute ~a′ = ~bA. Compute ~b′ = ~aB.
The shared secret key is ~a′ = ~b′.

TABLE II: Megrelishvili key exchange protocol according to [15].

We present a small numerical instance of Megrelishvili protocol in Example 1.

Example 1 Suppose Alice and Bob agree to use the finite field F2, a primitive nonsingular matrix

M =




1 0 1
1 0 0
0 1 1


, and a vector ~v = (1, 1, 0). Alice chooses the secret integer α = 3 and generate

A = Mα =




0 0 1
1 1 0
0 1 0


 as her private matrix. At the same time Bob chooses the secret integer

β = 5 and construct B = Mβ =




1 1 1
0 1 1
1 0 1


 as his private matrix. Alice sends Bob the vector

~a = ~vA = (1, 1, 1) and Bob sends Alice the vector ~b = ~vB = (1, 0, 0). This exchange is performed
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over an insecure channel. Then Alice computes ~a′ = ~bA = (0, 0, 1), while simultaneously Bob computes
~b′ = ~aB = (0, 0, 1), the vector ~a′ = ~b′ is their shared secret key.

IV. ELEMENTARY ALGORITHMS ANALYSIS

In this section, we measure the computational time complexities of several elementary algorithms
related to Megrelishvili protocol. From now on, the term complexity refers to the computational time
complexity, unless otherwise specified. We present the asymptotic complexity of each algorithm in O or
Ω notation (see [8] for more detailed explanation).

A. Algorithm Analysis of The Private Keys Computations

In order to create the private matrices A and B, Alice and Bob need to compute Mα and Mβ ,
respectively. These values can be computed using two different elementary algorithms. The first algorithm
is the standard (naive) exponentiation method and the second one is the fast exponentiation algorithm
which utilizes the binary representation of the corresponding exponent (i.e. α or β). We describe the
pseudocode of the standard exponentiation algorithm for calculating Mα for an integer α ≥ 1 in
Algorithm 1.

Algorithm 1 Standard Matrix Exponentiation Algorithm

Require: M ∈Mn (q) and α ≥ 1
1: N←M, k ← 1
2: while k < α do
3: N← NM // N = Mk

4: k ← k + 1 // increment k by 1
5: end while

Ensure: k = α and N = Mα

The complexity of Algorithm 1 is analyzed in Theorem 1.

Theorem 1 Suppose M ∈ Mn (q) and α is a positive integer. The complexity of Algorithm 1 is
O (f (n) · α), where f (n) stands for the complexity of the chosen matrix multiplication algorithm, and
each step is a scalar operation in Fq .

Proof: Observe that the while loop of lines 2 - 5 of Algorithm 1 takes precisely α steps, where each
step consists of a multiplication of two square matrices. Suppose f (n) is the complexity of the chosen
matrix multiplication algorithm (e.g. f (n) = O

(
n3
)

for the conventional square matrix multiplication
algorithm). If we assume that one scalar operation in Fq takes O (1) time, then the total computational cost
for the entire algorithm is f (n) ·α = O (f (n) · α). Thus, the complexity of Algorithm 1 is O (f (n) · α).
�

For any M ∈ Mn (q) and any integer α ≥ 1, Algorithm 1 clearly outputs the correct Mα, yet this
algorithm is highly impractical. In order to compute Mα efficiently, we can modify the fast modular
exponentiation algorithm for integer described in [10]. The idea is to use the binary representation of α
to convert the calculation of Mα into a succession of squarings and multiplications of matrices. Suppose
the binary representation of α is a k-bits α0α1 . . . αk−1, that is

α = α020 + α121 + · · ·+ αk−12k−1 =
k−1∑

i=0

αi2
i, (1)

where αi ∈ {0, 1} for all 1 ≤ i ≤ n. The value of Mα can be computed in the following way

Mα = M
∑k−1

i=0 αi2
i

=
k−1∏

i=0

Mαi2
i

. (2)
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Observe that M2i+1

= M2i·2 =
(
M2i

)2
, thus the sequence M20 ,M21 , . . . ,M2n−1

can be computed
efficiently using successive squaring. Moreover, the calculation of Mα can be performed using k suc-
cessive squarings and k multiplications of matrices. The pseudocode for the fast matrix exponentiation
algorithm is explained in Algorithm 2. The complexity of Algorithm 2 is analyzed in Theorem 2.

Algorithm 2 Fast Matrix Exponentiation Algorithm

Require: M ∈Mn (q) and α ≥ 1
1: N← I
2: while α > 0 do
3: if αmod 2 = 1 then
4: N← NM
5: end if
6: M←M2

7: α← α div 2
8: end while

Ensure: α = 0 and N = Mα

Theorem 2 Suppose M ∈ Mn (q) and α is a positive integer. The complexity of Algorithm 2 is
O (f (n) · logα), where f (n) stands for the complexity of the chosen matrix multiplication algorithm,
and and each step is a scalar operation in Fq .

Proof: The while loop of lines 2 - 8 of Algorithm 2 is executed whenever the value of α is positive.
In each iteration, the value of α is reduced to half. Suppose the binary representation of α is a k-bits
α0α1 . . . αk−1, then α =

∑k−1
i=0 αi2

i, and consequently the number of while loop iterations of lines 2 -
8 is at most k. Since α = O

(
2k
)
, then the total number of while loop iterations in Algorithm 2 is at

most O (log2 (α)). Assuming that one scalar operation in Fq requires O (1) time, the complexity of the
entire algorithm is f (n) · O (log2 α) = O (f (n) · logα). �

The complexities of Algorithm 1 and Algorithm 2 depend on the chosen square matrix multiplication
algorithm. The complexity of the standard square matrix multiplication algorithm is O

(
n3
)

[8]. Thus,
if this algorithm is implemented in Algorithm 1 and Algorithm 2, then the complexity of each algo-
rithm becomes O

(
n3 · α

)
and O

(
n3 · logα

)
, respectively. Obviously, Algorithm 2 is more preferable

to Algorithm 1. The asymptotic running time of Algorithm 2 can be optimized using faster matrix
multiplication algorithm. Currently, the asymptotically fastest known deterministic algorithm for square
matrix multiplication is due to A. Ambainis, Y. Filmus, and F. Gall [16]. The running time of this
algorithm is O

(
n2.3728639

)
, yet the constant coefficient hidden by the O notation is enormous that

the implementation of this algorithm and some of its predecessors (such as Coppersmith-Winograd’s
Algorithm [17], Stothers’ Algorithm [18], and Williams’ Algorithm [19]) are considered impractical.
Another deterministic algorithm which is asymptotically faster than the conventional method is the well-
known Strassen’s Algorithm [20] which runs in O

(
nlg 7

)
time. However, Strassen’s Algorithm is not

often the best choice for square matrix multiplication due to numerical stability and space complexity
issue [8]. If the utilization of non deterministic algorithm for square matrix multiplication is allowed, the
complexity of Algorithm 2 can be reduced to O

(
n2 · logα

)
by Freivalds’ Algorithm [21].

To exchange the public values (the vector ~a and ~b), each party needs to compute ~a = ~vA and
~b = ~vB, respectively. Each of these operation can be considered as a matrices multiplication of size
1 × n and n × n whenever ~v ∈ Fnq and A,B ∈ Mn (q). These operations can be carried out using
conventional matrix multiplication algorithm in O (1 · n · n) = O

(
n2
)

steps, where each step is a scalar
operation in Fq . As a result, with the assumption that the cost for square matrix multiplication satisfies
f (n) = Ω

(
n2
)

[8], the total cost for constructing a private key and its corresponding vector to be
exchanged is O (f (n) · logα) +O

(
n2
)

= O (f (n) · logα).
To conclude the key exchange agreement, each party needs to compute their shared secret key. Each of

Alice and Bob needs to calculate ~a′ = ~bA and ~b′ = ~aB, respectively. If ~a,~b ∈ Fnq and A,B ∈ Mn (q),
then each of the calculation is a matrices multiplication of size 1× n and n× n. Therefore, the shared

16



secret key can be computed in O (1 · n · n) = O
(
n2
)

steps, where each step is a scalar operation in Fq .
The summary for algorithms complexities in private keys generations, public exchange of values, and
shared secret key computations is described in Table III.

Algorithms Mathematical operations Asymptotic complexities
Private key generation Mα (M ∈Mn (q) and α ∈ N) Upper bound: O (f (n) · logα)

Lower bound: Ω
(
n2 logα

)

Public exchange of value ~vA where ~v ∈ Fnq and A = Mα Upper bound: O
(
n2

)

Lower bound: Ω
(
n2

)

Shared secret ~bA where ~b ∈ Fnq and A = Mα Upper bound: O
(
n2

)

key computation Lower bound: Ω
(
n2

)

TABLE III: Elementary algorithms complexities in Megrelishvili key exchange protocol. The function
f(n) denotes the asymptotic complexity for the chosen matrix multiplication algorithm. The mathematical
operations involved are observed from Alice’s perspective.

B. Algorithm Analysis of Public Matrices Construction

The explicit construction method of the public matrices for Megrelishvili protocol was first described
in [13]. This method is also reviewed in [15], [22]. The technique of generating the public matrices
in [13], [15], [22] is easy, yet it only deals with the case where the vector space is defined over F2

and the dimension of the vector space is odd. The original construction method is explained as follows.
Suppose Mn denotes the public matrices of size n, the matrix Mn for odd values of n is composed
using following recurrences

M3 =




1 0 1
1 1 0
0 1 0


 ,

M5 =




1 0 1 0 1
1 0
0 M3 1
1 0
0 1 0 1 0




=




1 0 1 0 1
1 1 0 1 0
0 1 1 0 1
1 0 1 0 0
0 1 0 1 0




,

M7 =




1 0 1 0 1 0 1
1 0
0 1
1 M5 0
0 1
1 0
0 1 0 1 0 1 0




=




1 0 1 0 1 0 1
1 1 0 1 0 1 0
0 1 1 0 1 0 1
1 0 1 1 0 1 0
0 1 0 1 0 0 1
1 0 1 0 1 0 0
0 1 0 1 0 1 0




,

· · ·

Mn+2 =




1 0 1 0 · · · 0 1
1 0
0 1
1 Mn 0
...

...
0

0 1 0 1 · · · 1 0




. (3)

It is clear that the construction of Mn can be performed using a doubly-nested for loops algorithm,
hence the creation of Mn requires O

(
n2
)

steps.
Another technique to construct the public matrices is by utilizing the companion matrices of primitive

polynomials over finite fields [23], [24]. This method is not limited to a particular finite field and the
size of the matrices produced are arbitrary. Suppose f (x) = xn +

∑n−1
i=0 aixi is a monic polynomial of
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degree n over Fq [x]. The companion matrix C for f (x) is defined as C = [Cij ], where

Cij =




−ai−1, if 1 ≤ i ≤ n and j = n

1, if i− j = 1
0, otherwise.

(4)

The matrix C of size n × n can be created using a doubly-nested for loops algorithm which runs in
O
(
n2
)

steps. Furthermore, this matrix can be used as a public matrix for Megrelishvili protocol.
However, using a single particular public matrix in a key exchange protocol for a fixed value of vector

space dimension is insecure. Therefore, the matrices that are produced using recurrence equation (3) and
companion matrix definition in equation (4) can not be used straightforwardly. We present a randomized
algorithm to construct public matrix of size n in Algorithm 3.

Algorithm 3 Randomized Construction of Public Matrix

Require: a matrix N of size n that is generated using equation (3) or (4).
1: randomly generates Q ∈ GLn (q)
2: M← QNQ−1 // M = QNQ−1

Ensure: M is a matrix which satisfies ord (M) = ord (N)

Algorithm 3 requires a matrix that is generated using equation (3) or (4). Suppose N is an input
of Algorithm 3, the output of this algorithm is a matrix M which satisfies ord (M) = ord (N). The
correctness of this algorithm is explained in Theorem 3.

Theorem 3 Let M and N be two matrices satisfying M = QNQ−1, then ord (M) = ord (N).

Proof: Suppose ord (N) = `, then ` is the least positive integer satisfying N` = I. By mathematical
induction on `, we have M` =

(
QNQ−1

)`
= QN`Q−1 = QIQ−1 = I, and therefore ord (M) ≤ `.

Suppose ord (M) = k < `, then, by mathematical induction on k, we have Mk =
(
QNQ−1

)k
=

QNkQ−1, and consequently Nk = Q−1MkQ. The supposition that ord (M) = k gives Mk = I, and
thus Nk = Q−1MkQ = I, which means ord (N) ≤ k < `. This contradicts our previous assumption
that ord (N) = `. Therefore, it must be the case that ord (M) = ord (N) = `. �

Observe that Algorithm 3 only performs one mathematical calculation of line 2, i.e. the computation of
QNQ−1. This computation consists of two multiplications of matrices and one matrix inversion. Since
matrix inversion is no harder than matrix multiplication [8, Theorem 28.2], the total computational cost
of line 2 is O (2 · f (n) + f (n)) = O (f (n)), where f (n) denotes the complexity for the chosen matrix
multiplication algorithm. The running time of Algorithm 3 also depends on the complexity of generating
a random nonsingular matrix Q of line 1. If this line can be executed in O (g (n)) time, then the running
time of the algorithm becomes O (f (n) + g (n)).

We propose an elementary method to construct random nonsingular matrices over Fq in Algorithm 4.
This algorithm requires a positive integer n as an input and it produces a random nonsingular n × n
matrix Q.

The correctness and complexity analysis of Algorithm 4 is explained in Theorem 4.

Theorem 4 Given a positive integer n, Algorithm 4 yields a random nonsingular matrix Q in O
(
n2
)

steps.

Proof: The for loop of lines 1 - 11 is a construction of an upper triangular matrix Q which satisfies
following definition

Q = Q [i, j] where Q [i, j] =





a random non zero a ∈ Fq , if i = j
a random a ∈ Fq , if i < j
0, if i > j.

(5)

Therefore, after line 11 is executed, Algorithm 4 yields an upper triangular matrix Q whose diagonal
elements are non zero. Consequently, det (Q) =

∏n
i=1 Q [i, i] 6= 0, and hence the matrix Q is nonsingular.

Each of line 12 and 13 respectively performs a consecutive permutation of the rows and the columns of
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Algorithm 4 Random Nonsingular Matrix Generation

Require: a positive integer n.
1: for i← 1 to n do
2: for j ← 1 to n do
3: if i = j then
4: Q [i, j]← Random.Element(F∗q) // Q[i, j] is a non zero element if i = j
5: else if i < j then
6: Q [i, j]← Random.Element(Fq) // Q[i, j] is an arbitrary element if i < j
7: else
8: Q [i, j]← 0 // Q[i, j] is zero if i > j
9: end if

10: end for
11: end for
12: Q← Permute. row (Q) // permutes the rows of Q
13: Q← Permute. col (Q) // permutes the columns of Q
Ensure: Q is a nonsingular matrix of size n.

the matrix. Since the singularity of a matrix is invariant under rows and columns permutations [12], the
matrix Q produced after line 13 is nonsingular.

Observe that the doubly nested loop of lines 1 - 11 yields an Ω
(
n2
)

lower bound for on the running time
of Algorithm 4 . Assuming that each of Random.Element(F∗q) and Random.Element(Fq) subroutine
takes O (1) time and each of Permute. row (Q) and Permute. col (Q) subroutine takes O (n) time (see
[8] for more detailed explanation concerning randomized algorithms), the overall complexity of this
algorithm is O

(
n2 + 2 · n+ 2 · 1

)
= O

(
n2
)

steps, where each step is a scalar operation in Fq . �
Since the creation of a random nonsingular matrix Q can be performed in O

(
n2
)

steps, the running
time of Algorithm 3 becomes O

(
f (n) + n2

)
. Assuming that the complexity for square matrix multipli-

cation satisfies f (n) = Ω
(
n2
)

[8], the running time of Algorithm 3 turns into O (f (n)). This means
the complexity of this algorithm depends solely on the matrix multiplication procedure of line 2.

C. Algorithm Analysis of Exhaustive Search Attack

In this section, we analyze the security of Megrelishvili key-agreement protocol against an elementary
exhaustive search attack. We introduce the concept of Megrelishvili matrix-vector problem as the linear
algebraic problem that underlies the security of this protocol in Definition 1.

Definition 1 Let Fnq be a vector space over the finite field Fq , ~v and ~w are two vectors in Fnq , and M
is an n× n nonsingular matrix over Fq . The Megrelishvili vector-matrix problem (MVMP for short) is
the problem of determining an integer α (if such integer exists) which satisfies ~vMα = ~w.

Megrelishvili matrix-vector problem is similar to the well-known discrete logarithm problem. One
palpable difference is that the exponentiation in this problem is applied to a square matrix and the
quantities that are compared on each side of the equal sign are vectors. These vectors are not the element
of a multiplicative group. We present an exhaustive search procedure which solves this problem in
Algorithm 5. In this algorithm we use the fact that the multiplicative order of a matrix M ∈ GLn (q) is
no more than qn − 1 [11].

It is apparent that, if there is an integer α in 1 ≤ α ≤ qn− 1 that satisfies ~vMα = ~w, then Algorithm
5 outputs α. Therefore Algorithm 5 gives a trivial bound for MVMP.

Theorem 5 Let Fnq be a vector space over the finite field Fq , ~v and ~w are two vectors in Fnq , and M is
an n × n nonsingular matrix over Fq . Then the Megrelishvili vector-matrix problem ~vMα = ~w can be
solved in O (f (n) · qn) steps, where f (n) stands for the complexity of the chosen matrix multiplication
algorithm and each step consists of scalar operations in Fq .
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Algorithm 5 Exhaustive Algorithm for Solving MVMP

Require: M ∈Mn (q) and ~v, ~w ∈ Fnq
1: Q←M, α← 1
2: while α ≤ qn − 1 and ~vQ 6= ~w do
3: α← α+ 1 // increment α by 1
4: Q← QM // Q = Mα

5: end while
Ensure: α = qn or ~vQ = ~w

Proof: The line 4 of Algorithm 5 is a multiplication of two n×n matrices. Suppose f (n) is the complexity
of the chosen matrix multiplication algorithm. Since there are at most qn − 1 matrix multiplications in
Algorithm 5, the total number of scalar operations in the algorithm is O (f (n) · qn − 1) = O (f (n) · qn).
�

The number of iterations required to find α from the equation ~vMα = ~w depends on the value of ~v,
~w, and ord (M). Moreover, whenever the value of ord (M) is known, the expression qn−1 in Algorithm
5 can be altered to ord (M), and therefore the trivial bound for MVMP becomes O (f (n) · ord (M)).
This means the number of iterations performed to check whether ~vMα = ~w can be reduced to ord (M).

For example, let ~v = (0, 0, 1), ~w = (1, 1, 1), and M =




1 1 0
1 1 1
1 0 0


. The order of M is 3 and

~vM = (1, 0, 0), ~vM2 = (1, 1, 0), vM3 = (0, 0, 1), and thus the equation ~vMα = ~w has no solution.

V. COMPLEXITIES COMPARISON AMONG CONVENTIONAL DHP, ECDHP, AND MEGRELISHVILI
PROTOCOL

In this section, we discuss the complexities comparison among conventional Diffie-Hellman protocol
(DHP), elliptic curves Diffie-Hellman protocol (ECDHP), and Megrelishvili protocol. We divide each
protocol into three main phases: private key generation, public exchange of value, and further private
computation. The complexities of these phases in each protocol are compared to each other. In addition,
we also contrast the number of scalar operations required to reveal the secret integer in each key exchange
scheme using exhaustive search attack.

All protocols are considered to work over the finite field Fq . To simplify our analysis, we restrict
our observation to the case where q is prime. The dimension of the vector space used in Megrelishvili
protocol is denoted by n. In our analysis all scalar operations in Fq are assumed to take O (1) steps.

A. Comparison for Private Key Generation

The private keys for the conventional DHP and ECDHP are simply integers (see Table I) which can
be selected in O (1) steps. On the other hand, the private keys for Megrelishvili protocol consist of two
values, a random integer α and a matrix A which is obtained from exponentiating the public matrix M
with α. Although the selection of α can be performed in O (1) steps, the calculation of A = Mα is time
consuming. The upper bound of this private matrix generation is O

(
n3 logα

)
steps, whereas the lower

bound is Ω
(
n2 logα

)
steps (see Section IV-A). However, Alice may decide to generate A later during

the public exchange of value. In this condition, Alice’s private key is simply an integer α, which similar
to the private key in DHP and ECDHP.

B. Comparison for Public Exchange of Value

In the conventional DHP, Alice needs to calculate gα as her public value. This computation can be
performed in O (logα) steps using fast modular exponentiation algorithm [10]. Analogously, in ECDHP,
Alice needs to calculate αP where P ∈ E (Fq) as her public value. The computation of this value can
be carried out using double-and-add algorithm which takes O (logα) steps [10]. Hence, in both DHP
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and ECDHP, the public values to be exchanged can be computed in O (logα) steps. Since in DHP
and ECDHP typically α ≤ q, the upper bounds for public value calculations in both DHP and ECDHP
become O (log q) steps [10].

In Megrelishvili protocol, Alice has to calculate ~vA as her public value. Whenever the matrix A is al-
ready computed during private key generation, this computation can be performed in O

(
n2
)

steps, where
n is the dimension of the vector space used (see Section IV-A). However, Alice may choose not to calculate
A during the private key generation. If this condition happens, then Alice needs to calculate ~vMα as
her public value. This calculation consists of a matrix exponentiation Mα which requires O (f (n) logα)
steps (see Theorem 1) and a vector-matrix multiplication which takes O

(
n2
)

steps (see Section IV-A).
The function f (n) stands for the complexity of the chosen matrix multiplication algorithm. Therefore,
under the assumption that f (n) = Ω

(
n2
)

(see [8]), the total number of scalar computations to obtain
~vMα becomes O (f (n) · logα) +O

(
n2
)

= O (f (n) · logα). Since in Megrelishvili protocol typically
α ≤ qn−1, the upper bound for this computation becomes O (f (n) · log (qn − 1)) = O (n · f (n) log q).
For example, if we implement the naive matrix multiplication algorithm to calculate ~vMα, the upper
bound becomes O

(
n4 log q

)
.

C. Comparison for Further Private Computation

Alice determines the shared secret key in conventional DHP by exponentiating the public value from
Bob. That is, she calculates Bα where B is Bob’s public value. This computation can be performed
by fast modular exponentiation in O (logα) steps. Similarly, in ECDHP, Alice determines the shared
secret key by calculating αQB , where QB ∈ E (Fq) is Bob’s public point (see [10, Table 6.5]). The
computation of αQB can be carried out using double-and-add algorithm in O (logα) steps [10]. Since
in DHP and ECDHP typically α ≤ q, the upper bounds for public value calculations in both DHP and
ECDHP become O (log q) steps [10].

In Megrelishvili protocol, Alice determines the shared secret key by computing ~bA, where ~b ∈ Fnq
is Bob’s public vector. Since A has previously been computed during private key generation or public
exchange of value, the calculation of ~bA requires O

(
n2
)

steps, where n is the dimension of the vector
space used. However, whenever the value q and n satisfy n ≥ √log q (which happens in some cases, see
[7]), the computational complexity for calculating ~bA clearly higher than the computational complexity
for calculating Bα and αQB in its DHP and ECDHP counterpart.

D. Comparison for Exhaustive Search Attack

It is obvious that the discrete logarithm problem (DLP) in Fq and E (Fq) can be solved using exhaustive
search algorithm in O (q) steps, where each step is a scalar operation in Fq [10]. From Theorem 5, we see
that the upper bound to obtain the secret integer in Megrelishvili protocol using similar exhaustive search
techniques requires O (f (n) · qn) steps. This means the complexity of solving Megrelishvili matrix-
vector problems is higher by a factor of f (n) qn−1 than its DLP and ECDLP counterpart. Intuitively,
this condition means Megrelishvili protocol is “more secure” than DHP and ECDHP against exhaustive
search attack.

We summarize our analysis in this section in Table IV.

VI. CONCLUSION AND FUTURE WORKS

In this article, we explore the complexities of several elementary algorithms involved in Megrelishvili
protocol. We give asymptotic bounds for the running time of elementary algorithms utilized during the
private keys generations. These asymptotic bounds are summarized in Table III. We also propose an
elementary randomized procedure for generating the public matrices for Megrelishvili protocol in Algo-
rithm 3 and show that the complexity of this algorithm depends exclusively on the matrix multiplication
method it chooses to implement. Finally, we introduce the notion of Megrelishvili vector-matrix problem
(MVMP) as an underlying mathematical problem for the security of Megrelishvili protocol. We gives
an O (f (n) · ord (M)) trivial bound for MVMP, where ord (M) is the order of an n× n public matrix
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Conventional DHP ECDHP Megrelishvili protocol
over Fq over E (Fq) over Fnq

Computation Formula Complexity Formula Complexity Formula Complexity
Private key Selecting O (1) Selecting O (1) Selecting O (1)
generation an integer α. an integer α. an integer α.

Calculate Upper bound:
A = Mα. O

(
n3 logα

)
.

Lower bound:
Ω
(
n2 logα

)
.

Public exchange A = gα O (logα) QA = αP O (logα) ~a = ~vA O
(
n2

)

of value ~a = ~vMα O (f (n) logα)

Further private A′ = Bα O (logα) Q′A = αQB O (logα) ~a′ = ~bA O
(
n2

)

computation
Exhaustive Solving O (q) Solving O (q) Solving Upper bound:
search attack h = gx Q = xP ~w = ~vMx O

(
f (n) · qn−1

)
.

for x. for x. for x. Lower bound:
Ω
(
n2 · ord (M)

)
.

TABLE IV: Summary of complexities comparison among DHP, ECDHP, and Megrelishvili protocol. The
function f(n) denotes the asymptotic complexity for the chosen matrix multiplication algorithm. The
private key computation, public exchange of value, and further private computation are observed from
Alice’s perspective.

used in the protocol and f (n) is the complexity for the chosen matrix multiplication algorithm.
The summary of complexities comparison among conventional Diffie-Hellman Protocol (DHP), elliptic

curves Diffie-Hellman protocol (ECDHP), and Megrelishvili protocol is summarized in Table IV. Com-
pared to DHP or its variant on elliptic curves (ECDHP), the complexities of the private keys generations
in Megrelishvili protocol are higher. Moreover, the computational complexities of the public exchange
of values and further private computations in this protocol are quadratic with respect to dimension of the
vector space used. These two reasons are probably the reasons why the implementation of Megrelishvili
protocol is still limited.

In Section V-D, we show that the complexity of solving MVMP by exhaustive search procedure is
higher by a factor of f (n) qn−1 than its discrete logarithm problem (DLP) and elliptic curves version
(ECDLP) counterpart. This condition implies that the number of scalar calculations required to solve
MVMP is greater than the number of scalar calculations required to solve DLP and ECDLP. Intuitively,
this result also indicates that Megrelishvili protocol is “more secure” than DHP and ECDHP against
exhaustive search attack. Nevertheless, this outcome also prompts a scientific question whether Megrel-
ishvili protocol is theoretically and practically safer than the DHP or ECDHP. To our knowledge, any
non-trivial algorithm for solving MVMP has not been proposed.
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