
Digital Forensic Analysis on iDevice:
Jailbreak iOS 12.1.1 as a Case Study

Amin Aenurahman Ali 1, Niken Dwi Wahyu Cahyani 2, Erwid Musthofa Jadied 3

1,2,3 Informatics, School of Computing, Telkom University
Jl. Telekomunikasi No. 1 Terusan Buah Batu, Bandung, Indonesia

1 altear@student.telkomuniversity.ac.id
2 nikencahyani@telkomuniversity.ac.id

3 jadied@telkomuniversity.ac.id

Abstract
Jailbreak has an issue in data alteration, as it modifies file(s) in the device to allow user to extract
more data than without jailbreaking. This issue raises controversy of the use of jailbreaking in digital
forensic investigation, as data integrity is a prominent requirement in a court proceeding. This study
aims to analyze the process of jailbreak, what is actually done by the jailbreak code in a device, and
what data is actually modified by the jailbreak code. By using the latest version of iOS system, this
study uses the voucher_swap exploit as a representation of semi-tethered jailbreaking method to
investigate the effects of jailbreak on data integrity on a idevice. The investigation is conducted
based on to what extent data can be extracted from the jailbreak device, hash value comparison of
the data, and source code analysis to scrutinize the effect of jailbreak to the system and user data
inside the device. Results of this study suggest that jailbreak is acceptable to prepare idevice in
digital forensic investigations to acquire more data, as it maintains the integrity of user data. These
results may help forensic communities, especially investigators in their decision about the
acceptability of jailbreaking in idevide forensic investigations.

Keywords: digital forensics, iOS, iPhone, jailbreak, root privilege

Abstrak
Jailbreak memiliki masalah dalam perubahan data, karena memodifikasi file di perangkat untuk
memungkinkan pengguna mengekstrak lebih banyak data daripada tanpa jailbreak. Masalah ini
menimbulkan kontroversi penggunaan jailbreak dalam investigasi digital forensik, karena integritas
data merupakan persyaratan utama dalam proses pengadilan. Penelitian ini bertujuan untuk
menganalisis proses jailbreak, apa yang sebenarnya dilakukan oleh kode jailbreak di perangkat, dan
data apa yang sebenarnya dimodifikasi oleh kode jailbreak. Dengan menggunakan versi terbaru
sistem iOS, penelitian ini menggunakan exploit voucher_swap sebagai representasi dari metode
jailbreak semi-tethered untuk menyelidiki efek jailbreak pada integritas data pada sebuah idevice.
Penyelidikan dilakukan berdasarkan sejauh mana data dapat diekstraksi dari perangkat jailbreak,
perbandingan nilai hash data, dan analisis kode untuk meneliti efek jailbreak terhadap sistem dan
data pengguna di dalam perangkat. Hasil penelitian ini menunjukkan bahwa jailbreak dapat diterima
untuk mempersiapkan idevice dalam investigasi forensik digital untuk memperoleh lebih banyak
data, karena menjaga integritas data pengguna. Hasil ini dapat membantu komunitas forensik,
khususnya para penyelidik dalam keputusan mereka tentang penerimaan terhadap penjatuhan
hukuman dalam penyelidikan forensik pada idevide.

Kata Kunci: digital forensik, iOS, iPhone, jailbreak, root privilege

OPEN ACCESS

ISSN 2460-9056
socj.telkomuniversity.ac.id/indojc

Ind. Journal on Computing
Vol. 4, Issue. 2, Sept 2019. pp. 205-218

doi:10.21108/indojc.2019.4.2.349

Received on August 2019. Accepted on Sept 2019

http://socj.telkomuniversity.ac.id/indojc

I. INTRODUCTION

OS was first introduced in 2007 on an iPhone device [1]. The iOS was developed by the Apple Machintosh
Team, which is officially called the iPhone OS. Then it was changed to iOS in 2010. iOS can be used on

iPhone, iPad and iPod Touch devices. iOS has been going on for eleven years and has undergone changes and
increased security since it was first launched [2]. At the time of writing this paper, iOS 12.3 is the latest stable
version that can be used.

Jailbreak has an issue in data alteration. It somehow needs to modify files in the device in order to extract
more data. This file modification raises concern of data integrity as the prominent consideration in forensics
examination. We need to maintain the data integrity that is required by the court proceeding, by conducting data
extraction in a forensically sound manner. However, as in contrast, one proprietary forensic tool states that
jailbreaking is necessary to perform physical acquisition stage in order to do file system extraction and keychain
decryption, for 64-Bit iOS [3]. Without jailbreaking, the tools can only support logical acquisition that limit
data extraction only on idevice information, iTunes format backup, list of installed apps, media and shared files
[4]. The pros and cons of data integrity issue in a jailbreaking device makes the use of this method in forensic
examination is needed to be examined further, as it may influence the acceptability of digital data in a court of
law.

 However, despite of this importance issue of data modification in jailbreak, there are a few studies that
investigate to what extent jailbreaking modify the data, either system data or user data. Previous investigation
on the controversy of jailbreaking, in 2015, clarifies that this procedure will not change the internal digital
evidences of iPhone [5]. As iOS operating system and jailbreaking tools developed, we need to keep up to date
to analyze the process of jailbreak, what is actually done by the jailbreak code in a device, and what data is
actually modified that may raise concern in data integrity.

Therefore, this study aims to scrutinize the jailbreak impact to the latest version of iOS device in data
integrity, by conducting a digital forensic analysis particularly in iOS device as it is known as a device that has
taken care of users privacy and security on the top level of its architecture that may complicate the data
extraction process. Results of this research can be used as a basis by investigator, to decide whether the jailbreak
can be accepted or not by the forensic community to conduct an investigation on iOS.

In section I of paper contains the background of digital forensic on the idevice jailbreak. In section II explain
the jailbreak process on iOS and literature review. In section III explain the design of a digital forensic test is
done on the idevice, including in the form of flow testing as well as equipment needed for the test. Then in
section IV described in detail the results and discussion. Finally, in section V the conclusions were given.

II. LITERATURE REVIEW

A. Mobile Forensic

Digital forensics is a branch of forensic science covering the recovery and investigation of the material found
in digital devices, usually often related to computer crimes. The main goal of digital forensics is the extraction
of suspected files from target devices that can be defined as digital proof.

The digital science of forensic uses the tools, techniques and method that scientifically proven, which can be
used to acquire and analyze digital evidence. There is a need for law enforcement agencies and governments,
even private organizations to invest the advancement and development of digital forensic technology itself.

According to the Association of Chief Police Officer (ACPO) there are four basic principles used in digital
forensics that are commonly adopted by forensic communities, namely follows [6]:

• A law enforcement agency and/or its officers are prohibited from altering digital data stored in an
electronic storage medium that will subsequently be carried over and liable in court.

I

Amin Aenurahman Ali et.al.
Digital Forensic Analysis on... 206

• For someone who feels the need to access digital data stored in the media of a proof of storage, then that
person must be completely clear in their competence and can explain the relevance and implications of
the actions he or she inspection and analysis of the evidence.

• There should be a technical and practical record of the measures applied to the storage media of evidence
in the event of examination and analysis, so that when the evidence is examined by a third party then the
parties should these three will result in the same result as the previous forensic investigator/analyst has
done.

• A person who is responsible for the case or examination and analysis of electronic evidence should be
able to be aware that the process that takes place in accordance with the laws of the law and the basic
principles (i.e. basic principle number 1, 2 and 3) can be properly communicated.

Then there are stages and procedures that are done in digital forensics. The first is preparation. This stage is
useful for setting up everything that will be needed during the investigation process. The second stage is the
acquisition stage. At this stage digital evidence that serves as a storage media will be done imaging process,
which is the process of doubling the contents of the storage media used and will generate the image file.
However, the computer/assistive device used in the imaging process must be equipped with write protect. This
Write protect is intended to maintain the integrity of the content of evidence. In digital forensic, data integrity
enforcement is done by comparing the hash values of the original data and duplicating data. The use of hash
values for data integrity testing has been generally accepted in the forensic community, as asserted by The
Scientific Working Group on Digital Evidence (SWGDE) (2006, p.3) “Digital Evidence submitted for
examination should be maintained in such a way that the integrity of the data is preserved. The commonly
accepted method to achieve this is to use a hashing function.” [7]. Next is the examination phase. The Image
file obtained at the acquisition stage will be examined comprehensively with the intention of obtaining digital
data in accordance with the investigation. Last is the reporting phase. This report contains data that is derived
from the investigation and analysis process in accordance with the investigations.

B. iOS

1) iOS Boot Process: Here is the booting process on iOS and the various jailbreak that can be done on iOS

Ind. Journal on Computing Vol. 4, Issue. 2, Sept 2019 207

Fig. 1. Booting process on iOS and various types of jailbreak attacks [8]

At the Fig. 1, first time the iPhone is turned on, it will read system startup code (Boot ROM) where the CPU
will only read the read-only area. This Boot ROM will encrypt the next Low-Level Bootloader (LLB) startup
stage containing the root certificate of the boot Integrity test. The next step will be detection on the iOS system
based on the command code on iBoot and kernel before it can finally run an application. After all stages, the
system will be tested to ensure that the system is ready for use [9].

2) Architecture of iOS: iOS has a resemblance to macOS, which is equally Unix-based, As iOS development
is based directly on OS X development. The APIs used on iOS also use Cocoa Touch so that the app can interact
with OS X, as described in the following image.

Fig. 2. IOS architecture is a layered architecture that communicates with each other [10]

The iOS architecture in Fig. 2 is an architecture that has layers, where the topmost layer serves as an
intermediary between the hardware and the software used. The application does not directly interact with the

Untethered Jailbreak

Tethered Jailbreak

Semi-Tethered Jailbreak

Amin Aenurahman Ali et.al.
Digital Forensic Analysis on... 208

hardware, thus communicating through a set of well-defined system interfaces. This interface makes it easy to
write applications that work constantly on a device.

System components of the Core OS Layer includes the operating system kernel and the kernel is the
foundation on which the entire iOS platform is built and provides the low level interface to the underlying
hardware. Amongst other things, the kernel is responsible for memory allocation, process lifecycle
management, input/output, inter-process communication, thread management, low level networking, file
system access and thread management [11].

3) Kernel of iOS: Based on the perspective file system, iOS is very similar to OS X. The iOS kernel already
exists in packages with kernelcaches extension (/System/Library/Caches/com.apple.kernelcaches) and
encrypted using IMG3 [12]. Table I display the detail.

TABLE I
KERNEL DIRECTORY ON OS X AND IOS [12]

OS System/Library/Caches/… Contains
OS X com.apple.kext.caches/Startup Mach-O binary
iOS com.apple.kernelcaches/kernelcache Kernelcache in IMG3 encrypted form

To see similarities can be done by using Apps Terminal with command "uname -a". Uname -a is used to print
the name, version and other spesifications about the OS and the system.

Fig. 3. Usage "uname -a" command to display details

Fig. 3 showing results of checking on OS X and iPhone using the "uname-a" command show similar results
where the XNU (Apple-developed optical system kernel) on OS X and iPhone shows the same version of XNU-
4903.

4) Jailbreak on iOS: Jailbreaking is the process to bypass restrictions on iOS to install other applications and
tweaks that are not allowed by Apple's party. The main purpose of jailbreaking is to get a superuser right that
allows root access to system files, so users can perform the activity without any limitations by Apple. Like
installing an app that doesn't exist in the App Store.

Previous research about forensic on iOS jailbreak has explained by Jonathan Zdziarski [13], using iPhone 4
iOS 4.3.3 where the architecture is 32-bits with the HFS+ format file system. However, that product has been
discontinue.

Continuing the research, this paper describes digital forensic investigations conducted on the iPhone 6s with
iOS 12.1.1 that can be jailbroken. This iPhone 6s uses a 64-bit architecture as well as a new scheme of the APFS
format file system [14]. Jailbreak on iOS 12.1.1 is done using the Unc0ver tool which is a semi-tethered

Ind. Journal on Computing Vol. 4, Issue. 2, Sept 2019 209

jailbreak. This type needs to start the jailbreak process every time the idevice is turned off or restarted, because
exploits that can be used now only reach the kernel stage, unlike used on iOS 4.3.3 using the redsn0w tool that
has exploits up to the Boot ROM stage.

Jailbreaking modern versions of iOS is an extremely complex process exploiting multiple vulnerabilities in
various parts of the OS to defeat the systems’ security measures [15]. In general terms, a jailbreak performs the
following steps:

• Sandbox Escape: during this stem, the jailbreak tool utilizes an exploit allowing it to access components
it does not have the permissions to.

• Privilege Escalation: the jailbreak gains elevated privileges allowing it to access protected resources (e.g.
mount the root file system, patch the kernel, inject code etc.)

• KPP Bypass: disables or works around the code signing check, which allows modifications to the file
system without making the device unbootable, causing a bootloop or random reboots.

While getting more complicated, modern jailbreak tools are safer to use. Starting with iOS 11, all jailbreaks
are utilizing the same installation procedure. A failed jailbreak does not cause system instability, and does not
required reinstalling iOS in order to perform another attempt.

Jailbreaking on iOS violates Apple's EULA and eliminates the warranty on its device. However, in 2010, the
Electronic Frontier Foundation (EFF) was able to obtain certain exceptions that were converted into the Digital
Millenium Copyright Act (DMCA). It keeps the jailbreak community safe from lawsuits [16].

There are 3 known types of jailbreak, namely:
• Tethered Jailbreak

Tethered jailbreak is a jailbreak that requires a computer-assisted tool. The idevice will be connected
to the computer using a lightning cable. This tethered jailbreak is temporary. Due to its temporary nature,
the jailbreak can only be used in a single boot. A tethered jailbreak will exploit the iBoot stage.

• Untethered Jailbreak
Untethered jailbreak is a jailbreak that does not need a computer unless the first process jailbreak.

Tethered jailbreak is permanent, because every time the idevice restarts no longer need to be connected
to the computer to activate jailbreak, including when running out of battery. This untethered jailbreak
uses the exploit on the Boot ROM as well as installing additional exspoitation on the root file system.

• Semi-Tethered
Semi-Tethered jailbreak is a process of jailbreak that can be done with or without using a computer.

This type of Jailbreak usually performs attacks on the kernel stage. This type of Jailbreak is done after
the iPhone is live and start running the application and should be done every time after the iPhone
restarts/turns off.

III. RESEARCH METHOD

A. Testing Flow

The test in this study follows the testing flow as described in Fig. 4 below. The scenario starts with the
acquisition stage on iOS jailed to collect evidence, after obtaining evidence data, the next process is to preserve
it to take care of the same thing or prevent it from being damaged. Preservation data is then separated from the
original data for later analysis. Then the idevice will be jailbroken to make a comparison to the jailed idevice.
On jailbroken devices, the acquisition and preservation process is done again to get data for analysis. Analysis
is based on the files obtained at the preservation stage, to determine the extent to which data can be extracted
using a jailbreak and the effect of jailbreak on the integrity of a data.

To strengthen the evidence for analysis, we also use the reverse engineering technique in the source code
exploit used in the jailbreak tools. The source code exploit was obtained from https://bugs.chromium.org/p/

Amin Aenurahman Ali et.al.
Digital Forensic Analysis on... 210

project-zero/issues/detail?id=1731 to find out the changes made from jailbreak against the iOS system, until
finally the results of the analysis are obtained and can be presented.

Fig. 4. Digital forensic testing flow on idevice

B. Tools

Tests were carried out on the iPhone 6s with the specifications described in Table II. In this test also needed
several devices that would support the testing process. The device is divided into two, namely software
(software) and hardware (hardware) with the specifications described in Table III and Table IV.

Experimental dataset in Table V is collected and downloaded from https://cdn.online-convert.com/example-
file/, two large text file downloaded and extracted from https://datasets.imdbws.com and one large video files
downloaded from http://podcasts.apple.com/apple_keynotes_1080p/2018/october2018_1080.m4v have been
copied to the iPhone. In one file type it consists of various formats with different amounts.

TABLE II
IPHONE SPESIFICATION

No Specification Detail
1 Name iPhone 6s
2 Identifier iPhone8,1 (A1633)
3 Platform s8000
4 BoardConfig n71map
5 Disk Type TLC
6 OS Version 12.1.1 Build 16C50
7 Firmware iPhone_4.7_12.1.1_16C50_Restore.ipsw
8 Card Slot No
9 Internal 128GB
10 RAM 2GB

Ind. Journal on Computing Vol. 4, Issue. 2, Sept 2019 211

TABLE III
SOFTWARE SPESIFICATION

No Software Detail
1 OS macOS Mojave 10.14.0
2 Tools - iTunes

- Xcode
- Jtool2

TABLE IV
HARDWARE SPESIFICATION

No Hardware Keterangan
1 Type Dell Inspiron 14 7447 Pandora
2 CPU Intel i7-4720HQ (8) @ 2.60GHz
3 RAM 8 GB 1600 MHz DDR3
4 IGPU Intel HD Graphics 4600
5 GPU Discrette Nvidia GTX950M 4GB DDR3 (disabled)
6 Storage SSD Samsung 850 Pro 256GB + HDD Toshiba 1TB
7 Cable Lighning to USB

TABLE V
EXPERIMENTAL DATASET

No Type Detail
1 Audio 6 file (.aac, .amr, .flac, .m4a, .m4p dan .mp3)
2 Dokumen 49 file (.xls, xlsx, .csv, .ppt, .pptx, .doc, .docx, .pdf, .rtf dan .txt)
3 File 8 file (.7z, .rar, .zip dan .bin)
4 Gambar 14 file (.gif, .heic, .jpg, .jpeg, .png dan .tiff)
5 Video 21 file (.3gp, .avi, .flv, .h264, .m4v, .mp4, .mpg, .mpeg, .swf, .webm

and .wmv)
6 Large Files 2 text file (title.basics.tsv and name.basics.tsv) over 500MB and 1

video files (october2018_1080.m4v) over 5GB

IV. RESULTS AND DISCUSSION

A. Data Extraction

The first test was carried out on a jailed iPhone condition to check the extent to which data can be extracted.
Then the same thing is done also when the condition of the iPhone has been jailbroken. The results show the
different location of the directory where the jailed iPhone shows that the File System (User) is in the root directory
(/) while in the iPhone jailbreak condition, the File System (User) is in the /private/var/mobile/Media directory.

Amin Aenurahman Ali et.al.
Digital Forensic Analysis on... 212

Fig. 5. Extraction data result from iPhone jailed

Fig. 6. Extraction data result from iPhone jailbreak

Based on Fig. 5 and Fig. 6 we can investigate the directory as detailed below:
• File system (User) located in /private/var/mobile/Media is a directory for user saving their data
• File system (Jailbreak) located in / (root) directory
• Application system like Appstore.app, Camera.app, iCloud.app and some jailbreak application is located

in /Application directory
• Application downloaded by user from Appstore or any other Sign Services are located in

/var/mobile/Containers/Data/Application
• Wallpaper default directory from iOS system is located in /Library/Wallpaper

Ind. Journal on Computing Vol. 4, Issue. 2, Sept 2019 213

• Message ringtones default directory from iOS system are located in /Library/Ringtones
• Voice memo is located in /private/var/mobile/Media/Recordings because its user Media

B. Data Integrity

To test whether jailbreak has an effect on data integrity, we have done it before and after the iphone was
jailbroken. The data used are experimental datasets mentioned in Table VI. Here is a summary:

TABLE VI
COMPARISON RESULT BY HASHING DATASET

Audio File
Name SHA256 Jailed SHA256 Jailbreak Match

example.m4a f7aa22884785dbb32e46501504d5dc8417
d96f70ec752e64d91100ebb58d9501

f7aa22884785dbb32e46501504d5dc8417
d96f70ec752e64d91100ebb58d9501 Yes

example.mp3 3c2298abb4c5b58c02826bbfe49a7ff7990
75b7fbcfafe0e10a1812f4bd69f31

3c2298abb4c5b58c02826bbfe49a7ff7990
75b7fbcfafe0e10a1812f4bd69f31 Yes

Document File
Name SHA256 Jailed SHA256 Jailbreak Match

example.docx dbd23bcdd0c41585d1a232d79ffc2cba0e8
f181fbeddfd32d79f985ae7ec7c49

dbd23bcdd0c41585d1a232d79ffc2cba0e8
f181fbeddfd32d79f985ae7ec7c49 Yes

example.pdf c7ff6c55e1f2b3fb6e364e4e4e20b325610
b041593f160fab04eebc61ae122ea

c7ff6c55e1f2b3fb6e364e4e4e20b325610
b041593f160fab04eebc61ae122ea Yes

File Name SHA256 Jailed SHA256 Jailbreak Match

example.rar e39c02ed8bed5488fcb7f73255e5fee06cb
a55ad808f6a24881392748bd309d1

e39c02ed8bed5488fcb7f73255e5fee06cb
a55ad808f6a24881392748bd309d1 Yes

example.zip e939e93c7941cb4f88840d591bd4226148
3364cbca5e5124da88587650478f3f

e939e93c7941cb4f88840d591bd4226148
3364cbca5e5124da88587650478f3f Yes

Image File
Name SHA256 Jailed SHA256 Jailbreak Match

example.jpeg 0f46080d81aecb235f999308d19513ef823
71658425f8ab63b2fa5d2ae521e13

0f46080d81aecb235f999308d19513ef823
71658425f8ab63b2fa5d2ae521e13 Yes

example.png e7fae8acb0d038f604f6a39963c5f5915d6
13963136f485716ed97a50df422e0

e7fae8acb0d038f604f6a39963c5f5915d6
13963136f485716ed97a50df422e0 Yes

Video File
Name SHA256 Jailed SHA256 Jailbreak Match

example.flv e930fea64610173fabd68d91339a84f3857
77b6da698bd2cffc14ba3b0f235bc

e930fea64610173fabd68d91339a84f3857
77b6da698bd2cffc14ba3b0f235bc Yes

example.mp4 e39733a03721009a154e595c5c1ee068b5
cef5c05a217b07c80a06b54a29eac2

e39733a03721009a154e595c5c1ee068b5
cef5c05a217b07c80a06b54a29eac2 Yes

Large File
Name SHA256 Jailed SHA256 Jailbreak Match

title.basics.tsv 6eb74d5ccb6c823ba0e3ecdd5425d962aa
8df02dd238b8fbcc68b8e5498dca8b

6eb74d5ccb6c823ba0e3ecdd5425d962aa
8df02dd238b8fbcc68b8e5498dca8b Yes

name.basics.tsv ceb2cf9053fa7625e8c89b60604123ef779
ebd3c4c34b151bc6a8325cec4a816

ceb2cf9053fa7625e8c89b60604123ef779
ebd3c4c34b151bc6a8325cec4a816 Yes

october2018_10
80.m4v

da697f4354557f4fa8e47a42b20faa64904
a75cae058b75f58e774eb8c9d9b78

da697f4354557f4fa8e47a42b20faa64904
a75cae058b75f58e774eb8c9d9b78 Yes

For more complete result can check https://is.gd/HashingDataset.
From the test results it appears that the jailbreak does not affect the integrity of a data, it is evidenced by the

results of hashing on each of the data listed in Table V. This result is amplified by the analysis of exploit

Amin Aenurahman Ali et.al.
Digital Forensic Analysis on... 214

voucher_swap which aims to override the original kernel_task so that the user has a higher previllege and has
read write access up to the root directory.

C. Voucher Swap Exploit

After investigating directory, analysis continue uses by exploit which is run on Xcode. Main exploit logic is
in the file voucher_swap/voucher_swap.c, in the function voucher_swap(). There are several stages until finally
the kernel can read / write via kernel_task_port. We have summarized these stages as following code:

1. void
2. voucher_swap()
3. ...
4. destroy_ports(gc_ports, gc_port_count);
5. ...
6. voucher_spray_free(voucher_ports, voucher_spray_count);
7. ...
8. uint64_t leaked_kmsgs[2] = {};
9. uint64_t address_of_base_port_pointer = ip_requests
10. + 1 * SIZE(ipc_port_request) + OFFSET(ipc_port_request, ipr_soright);
11. base_port_address = stage0_read64(address_of_base_port_pointer, leaked_kmsgs);
12. INFO("base port is at 0x%016llx", base_port_address);
13. // Check that it has the offset that we expect.
14. if (base_port_address % pipe_buffer_size != fake_port_offset) {
15. ERROR("base_port at wrong offset");
16. }
17. ...
18. uint64_t task_port_address = stage1_find_port_address(mach_task_self());
19. ...
20. uint64_t host_port_address = stage1_find_port_address(host);
21. ...
22. kernel_task = 0;
23. uint64_t port_block = host_port_address & ~(BLOCK_SIZE(ipc_port) - 1);
24. iterate_ipc_ports(BLOCK_SIZE(ipc_port), ^(size_t port_offset, bool *stop) {
25. uint64_t candidate_port = port_block + port_offset;
26. bool found = stage1_check_kernel_task_port(candidate_port, &kernel_task);
27. *stop = found;
28. });
29. ...
30. uint64_t kernel_map = stage1_read64(kernel_task + OFFSET(task, map));
31. ...
32. stage2_init(ipc_space_kernel, kernel_map);
33. ...
34. clean_up(uaf_voucher_port, ip_requests, leaked_kmsgs,
35. sizeof(leaked_kmsgs) / sizeof(leaked_kmsgs[0]));
36. ...
37. pipe_close(pipefds);
38. free(pipe_buffer);
39. mach_port_destroy(mach_task_self(), base_port);
40.

 After asking with the exploit developer, we get the conclusion that original exploit itself does not modify
user data [17]. On lines 4-6 aims to free memory. Continue by calling system calls to allocate memory (line 8-
16) in a certain pattern in the kernel. Then on line 18-20 explain to get the task_port and host address to be
replaced with fake kernel_task. On lines 22-28 do repetition to find the kernel_task address. Uses a use-after-
free vulnerability to modify memory while it's being used by the kernel (line 30-32), eventually resulting in the
ability to read and write arbitrary kernel memory. The last step, we clean fake kernel_task and some damaged
kernel state (line 34-39), so it doesn't cause the kernel panic when it used. After this is achieved, it is possible
to modify certain parts of kernel memory to escape the sandbox, at which point it can access any file. Doing it
this way should fully preserve the integrity of user data (except, of course, for the fact that installed the
voucher_swap app on the idevice).

Freeing the memory

Allocating memory
memory

Replacing task port
and host port

Finding kernel task

Modifiying kernel

Cleaning up damaged
kernel

Ind. Journal on Computing Vol. 4, Issue. 2, Sept 2019 215

As proof of the source code, we also dumped kernelcache under conditions before and after the jailbreak by
using Jtool2. The results of the dumping kernel are stored as txt, then compare by hashing it. Here is hashing
result of the kernelcache displayed on Table VII:

TABLE VII
COMPARISON RESULT BY HASHING KERNELCACHE

File Name SHA256 Jailed SHA256 Jailbreak Match

kernelcache.txt 509ce3f769e462b3f91446b60c880c345
1dcb7aabe32e9b8f417ddeb9afa1de7

fb84107ee60f9445d42788bd5b8b5290a
a73bb19f60bf2c2204d9cbe2621332d No

For more detailed results, it can be accessed at https://github.com/Am1nCmd/Final-Task in Dumped Kernel
directotry.

The following Fig. 7 shows the exploit position on iOS architecture. Here, the exploit as a jailbreak code will
alter system data only in the kernel level. The green color refers to the original file, the red color refers to exploit
voucher_swap works by creating a fake kernel_task and replacing the original kernel_task in kernelcache, while
the grey color refers to the file is untouched.

Fig. 7. Voucher_swap exploit work by modifying original kernel_task

V. CONCLUSION

In this study, digital forensic analysis on the latest idevice, i.e. iOS 12.1.1 is conducted to examine the process
of jailbreak and its impact on data integrity. By using the unc0ver tool with voucher_swap exploit, the analysis
of this semi-tethered type jailbreak has been used to compare the difference in the system and user data, before
and after the jailbreaking process. It is shown that even though the device has been jailbroken, the user data in

Amin Aenurahman Ali et.al.
Digital Forensic Analysis on... 216

the Media directory are not altered. Their data integrity are remain unchanged, they are shown by their match
hash value before and after being jailbroken. This means that no prepared-user data has changed after
jailbreaking. Nevertheless, data alteration in the system is inevitable. By analyzing the source code of the exploit
used, i.e. the voucher_swap as the jailbreak code, it changes the system data by making a fake kernel_task.
This fake kernel_task replaces the original kernel_task that is running in memory, to allow root privilege for
data extraction. Results of this study suggest that jailbreak is acceptable to prepare idevice in digital forensic
investigation to acquire more data while maintaining user data integrity.

REFERENCES

[1] S. D. Natalie Kerris, "Apple Reinvents the Phone with iPhone," Apple, 9 January 2007. [Online]. Available:

https://www.apple.com/newsroom/2007/01/09Apple-Reinvents-the-Phone-with-iPhone/. [Accessed 5 November 2018].
[2] Apple, "About the security content of iOS 12.1.1," Apple, April 03 2019. [Online]. Available: About the security content of iOS 12.1.1.

[Accessed 20 May 2019].
[3] Elcomsoft, "Elcomsoft iOS Forensic Toolkit," Elcomsoft, [Online]. Available: https://www.elcomsoft.com/eift.html. [Accessed 12 November

2018].
[4] D. R. S. Priyank Parmar, "Logical acquisition of iPhone without Jail Breaking," IJSRST, vol. 4, no. 9, pp. 2-3, 2018.
[5] K.-C. T. Y.-C. T. S.-J. W. Ya-Ting Chang, "Jailbroken iPhone Forensics for the Investigations and Controversy to Digital Evidence," Journal

of Computers, vol. 26, pp. 21-23, 2015.
[6] A. o. C. P. Officers, "ACPO Good Practice Guide ACPO Good Practice Guide for Digital Evidence," March 2012. [Online]. Available:

https://www.digital-detective.net/digital-forensics-documents/ACPO_Good_Practice_Guide_for_Digital_Evidence_v5.pdf. [Accessed 4 April
2018].

[7] S. W. G. o. D. Evidence, "SWGDE," 12 April 2006. [Online]. Available:
https://www.swgde.org/documents/Archived%20Documents/SWGDE%20Data%20Integrity%20Within%20Computer%20Forensics%20V1-
0. [Accessed 18 06 2019].

[8] K.-s. L. C. C. Y. W. Feng Liu, "Research on the technology of iOS jailbreak," in Sixth International Conference on Instrumentation &
Measurement, Computer, Communication and Control, Hefei, China, 2016.

[9] Packt, "iOS boot process and operating modes," [Online]. Available:
https://subscription.packtpub.com/book/networking_and_servers/9781783553518/3/ch03lvl1sec23/ios-boot-process-and-operating-modes.
[Accessed 20 November 2018].

[10] InteliPaat, "iOS Architecture," [Online]. Available: https://intellipaat.com/tutorial/ios-tutorial/ios-architecture/. [Accessed May 2019].
[11] S. Bhardwaj, "Core OS Layer in iPhone," 14 March 2013. [Online]. Available: https://www.c-sharpcorner.com/UploadFile/d49768/core-os-

layer-in-iphone/. [Accessed 27 May 2019].
[12] J. Levin, Mac OS X and iOS Internals, Indianapolis: John Wiley & Sons, Inc., 2013.
[13] J. Zdziarski, "iOS Forensic Investigative Methods," May 2013. [Online]. Available: https://www.zdziarski.com/blog/wp-

content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf. [Accessed 22 January 2019].
[14] Apple, "Apple File System Reference," 7 February 2019. [Online]. Available: https://developer.apple.com/support/apple-file-system/Apple-

File-System-Reference.pdf. [Accessed 18 March 2019].
[15] Scar, "Jailbreaking iOS 11 And All Versions Of iOS 10," 30 March 2018. [Online]. Available:

https://articles.forensicfocus.com/2018/03/30/jailbreaking-ios-11-and-all-versions-of-ios-10/. [Accessed 28 December 2018].
[16] Electronic Frontier Foundation, "Unintended Consequences: Fifteen Years under the DMCA," March 2013. [Online]. Available:

https://www.eff.org/id/pages/unintended-consequences-fifteen-years-under-dmca. [Accessed 5 November 2018].
[17] B. Azad, "Affect voucher_swap to Data Integrity," in email, 2019.

Ind. Journal on Computing Vol. 4, Issue. 2, Sept 2019 217

	 218

