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Abstract 

Estimation of the number of demands for a product must be done correctly, so that the company can 

get maximum profit. Therefore, this study discusses how to estimate the amount of sales demand in 

a company correctly. The model that will be used to estimate sales demand is the Multivariate 

Markov Chain Model. This model can estimate the future state by observing the present state. The 

model requires parameter estimation values first, namely the transition probability matrix and the 

weighted Markov chain, where in previous studies an estimation of the transition probability matrix 

has been carried out, so that in this study we will continue to estimate the weighted Markov chain 

parameters. This model is compatible with 5 data sequences (product types) defined as product 1, 

product 2, product 3, product 4, and product 5, with 6 conditions (no sales volume, very slow-

moving, slow-moving, standard, fast moving, and very fast moving). As the result, the state 

probability for product 1, product 2 and product 3 in company 1 are stationary at state 6 (very fast 

moving), product 4 and product 5 are stationary at state 2 (very slow moving). 

Keywords: Multivariate Markov chain model, demand, estimation, the weighted Markov chain 

 

I. INTRODUCTION 

arkov chain was first created by a Russian professor named Andrei A. Markov (1856-1922), the 

following is Markov's statement which was later referred to as Markov property (Markovian Property): 

"The conditional probability of a future event, given that the future event is known. past and present events are 

independent of past events and dependent only on present events.” [1] The formulation of the problem in this 

research is how to model the optimization problem of sales demand by using the multivariate Markov chain 

model. In previous studies [2], the estimation of the transition probability matrix has been carried out, so that 

in this research it will be continued to estimate the weighted Markov chain parameters. This model will be 

solved by linear program optimization method, using linprog facility in Matlab software.  

 

II. LITERATURE REVIEW 

In this multivariate Markov chain model, [3] it is assumed that there are s categories of categorical data 

(product types), each of which has m states (for example: many, few, etc.). 

M= {1, 2..., m} 

M 
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Let 𝒙𝑛
(𝑗)

 be the state probability vector of the jth sequence (product types) at time n. If at the nth time, the jth 

sequence (product types) is in state l, then it can be written [4]: 

𝒙𝑛
(𝑗)
= 𝒆𝑙 = (0, . . . ,0,   1,  ⏟

state 𝑙

, 0, . . . ,0)𝑇 . 

In constructing the multivariate Markov chain model, the following equation is assumed [5]: 

𝒙𝑛+1
(𝑗)

= ∑ 𝜆𝑗𝑘𝑷
(𝑗𝑘)𝒙𝑛

(𝑘)
,for 𝑗 = 1,2, . . . , 𝑠𝑠

𝑘=1      (1) 

where 𝜆𝑗𝑘 ≥ 0, 1 ≤ 𝑗, 𝑘 ≤ 𝑠,and ∑ 𝜆𝑗𝑘 = 1, for 𝑗 = 1,2, . . . , 𝑠𝑠
𝑘=1  

Thus, based on equation (1), the state probability distribution of the sequence (product type) j at time (n +1) 

depends on the states of the sequence (product type) j and k at time n [6]. Here 𝜆𝑗𝑘  is the weighted Markov 

chain which includes the effect of the sequence state (product type) k to j. As 𝐏(𝑗𝑘) is the probability of the 

sequence state (product type) k to j,[7] and 𝒙𝑛
(𝑘)

is the probability of the sequence state (product type) k at time 

n. [8] The following is writing in matrix: 

𝒙𝑛+1 =

(

 
 

𝒙𝑛+1
(1)

𝒙𝑛+1
(2)

⋮

𝒙𝑛+1
(𝑠)
)

 
 
=

(

 

𝜆11𝑷
(11) 𝜆12𝑷

(12) … 𝜆1𝑠𝑷
(1𝑠)

𝜆21𝑷
(21) 𝜆22𝑷

(22) … 𝜆2𝑠𝑷
(2𝑠)

⋮ ⋮ ⋱ ⋮
𝜆𝑠1𝑷

(𝑠1) 𝜆𝑠2𝑷
(𝑠2) … 𝜆𝑠𝑠𝑷

(𝑠𝑠))

 

(

 
 
𝒙𝑛
(1)

𝒙𝑛
(2)

⋮

𝒙𝑛
(𝑠)
)

 
 

 

                               ≡                                           𝐐                               𝐱𝑛                               (2) 

Model (2) shows that there is only a positive correlation between product lines, so it is assumed 𝜆𝑗𝑘 to have 

a non-negative value [9]. This illustrates that increasing the probability of each sequence (product) at time n 

can only increase the probability of the state at time (n+1). While in actual conditions it is often found a decrease 

in circumstances, for example from a behavior state to not selling. Therefore, in order for this model to include 

a state derivation, [10] the state probability vector 𝒙𝑛
(𝑗)

must be negatively correlated with the probability vector 

𝒛𝑛+1
(𝑗)

 as follows: 

𝒛𝑛+1
(𝑗)

=
1

𝑚−1
(𝟏 − 𝒙𝑛

(𝑗)
)     (3) 

1 is a vector of one, and 
1

𝑚−1
 is a normalization constant with 𝑚 > 2. 

The next step is to build a new model for s sequences (products) 𝒙𝑛
(1)
, 𝒙𝑛
(2)
, . . . , 𝒙𝑛

(𝑠)
by including the probability 

of deriving the state as in equation (3). 

The following is a new multivariate Markov chain model that includes state derivation: 

𝒙𝑛+1 =

(

 
 

𝒙𝑛+1
(1)

𝒙𝑛+1
(2)

⋮

𝒙𝑛+1
(𝑠)
)

 
 
= 𝜦+

(

 
 
𝒙𝑛
(1)

𝒙𝑛
(2)

⋮

𝒙𝑛
(𝑠)
)

 
 

⏟      
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

+ (
1

𝑚−1
) 𝜦−

(

 
 
𝟏 − 𝒙𝑛

(1)

𝟏 − 𝒙𝑛
(2)

⋮

𝟏 − 𝒙𝑛
(𝑠)
)

 
 

⏟          
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

  (4) 

where  𝚲+ =

(

 
 
𝜆1,1𝑷

(11) 𝜆1,2𝑷
(12) … 𝜆1,𝑠𝑷

(1𝑠)

𝜆2,1𝑷
(21) 𝜆2,2𝑷

(22) … 𝜆2,𝑠𝑷
(2𝑠)

⋮ ⋮ ⋱ ⋮
𝜆𝑠,1𝑷

(𝑠1) 𝜆𝑠,2𝑷
(𝑠2) … 𝜆𝑠,𝑠𝑷

(𝑠𝑠)

)
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  and  𝚲− =

(

 
 
𝜆1,−1𝑷

(11) 𝜆1,−2𝑷
(12) … 𝜆1,−𝑠𝑷

(1𝑠)

𝜆2,−1𝑷
(21) 𝜆2,−2𝑷

(22) … 𝜆2,−𝑠𝑷
(2𝑠)

⋮ ⋮ ⋱ ⋮
𝜆𝑠,−1𝑷

(𝑠1) 𝜆𝑠,−2𝑷
(𝑠2) … 𝜆𝑠,−𝑠𝑷

(𝑠𝑠)

)

 
 
  

 

where  𝜆𝑗𝑘 ≥ 0, 𝑗 = 1,2, . . . 𝑠, 𝑘 = 1,2, . . . , 𝑠, and ∑ 𝜆𝑗,𝑘 = 1

𝑠

𝑘=−𝑠

 

Equation (4) is equivalent to, 

𝒙𝑛+1 =

(

 
 

𝒙𝑛+1
(1)

𝒙𝑛+1
(2)

⋮

𝒙𝑛+1
(𝑠)
)

 
 
= (

𝑯1,1 𝑯1,2 … 𝑯1,𝑠
𝑯2,1 𝑯2,2 … 𝑯2,𝑠
⋮ ⋮ ⋱ ⋮
𝑯𝑠,1 𝑯𝑠,2 … 𝑯𝑠,𝑠

)

(

 
 
𝒙𝑛
(1)

𝒙𝑛
(2)

⋮

𝒙𝑛
(𝑠)
)

 
 
+ (

1

𝑚 − 1
)(

𝑱1,−1 𝑱1,−2 … 𝑱1,−𝑠
𝑱2,−1 𝑱2,−2 … 𝑱2,−𝑠
⋮ ⋮ ⋱ ⋮

𝑱𝑠,−1 𝑱𝑠,−2 … 𝑱𝑠,−𝑠

)(

𝟏
𝟏
⋮
𝟏

) 

                                      ≡                    𝐌𝑠                        𝐱𝑛   + 𝐛 

where  𝐇𝑗,𝑘 = (𝜆𝑗,𝑘 −
1

𝑚 − 1
𝜆𝑗,−𝑘)𝑷

(𝑗𝑘), and  𝐉𝑗,−𝑘 = 𝜆𝑗,−𝑘𝑷
(𝑗𝑘) 

for  𝑗 = 1,2, . . , 𝑠 and 𝑘 = 1,2, . . , 𝑠 

Therefore, 

 𝒙𝑛+1 = 𝑴𝑠
1𝒙𝑛+ 𝐈𝐛 

       = 𝐌𝑠
2𝒙𝑛−1+ (𝐈 + 𝐌𝑠

1)𝒃 

       = 𝐌𝑠
3𝒙𝑛−2+ (𝐈 + 𝐌𝑠

1 +𝑴𝑠
2)𝒃 

          ⋮ 

       = 𝐌𝑠
(𝑛+1)𝒙(𝑛−𝑛) + (𝑰 +𝑴𝑠

1+. . . +𝑴𝑠
𝑛)𝒃 = 𝐌𝑠

(𝑛+1)𝒙(0) + (∑𝑴𝑠
𝑘

𝑛

𝑘=0

)𝒃 

where  𝐌𝑠
0 = 𝑰 dan 𝐌𝑠

𝑛 = 𝑴𝑠. 𝑴𝑠. 𝑴𝑠. … .𝑴𝑠⏟            
Multiplication of matrix 𝐌𝑠 by  n times

 

The model used has a stationary distribution for a certain norm matrix‖. ‖ (in this case ‖𝐌𝑠‖∞) where ‖𝐌𝑠‖ <
1 . For any matrix M size nxn choose: 

‖𝐌‖∞ = 𝑚𝑎𝑥 {∑|𝐌𝑖𝑗|

𝑛

𝑗=1

} 

In this case it can be written: 

𝑙𝑖𝑚
𝑛→∞

𝒙𝑛 = 𝑙𝑖𝑚
𝑛→∞

∑𝑴𝑠
𝑘𝒃 = (𝑰 −𝑴𝑠)

−1𝒃

𝑛

𝑘=0

 

Furthermore, 

‖𝐌𝑠‖∞ ≤ max
1≤𝑘≤𝑠

{𝑚 |𝜆𝑗,𝑗 −
1

𝑚 − 1
𝜆𝑗,−𝑗| +∑|𝜆𝑗,𝑘 −

1

𝑚 − 1
𝜆𝑗,−𝑘|

𝑛

𝑗≠𝑘

} 

The smaller the ‖𝐌𝑠‖∞, the faster the convergence rate [9]. 
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III. RESEARCH METHOD 

The presentation of the experimental methods should be clear and complete in every detail facilitating 

reproducibility by other scientists. The value 𝜆𝑗,𝑘  can be estimated by minimizing the difference between the 

left and right sides of equation (4). This minimization process can be solved by solving a linear program 

optimization problem for a certain norm matrix, namely: ‖. ‖1 or ‖. ‖∞[6]. The following is the meaning of the 

two matrix norms [11]:  

Let matrix 𝐀 =  [𝑎𝑖𝑗]𝜖 ℂ𝑛𝑥𝑛, then 

1. ‖𝐀‖1 = max
𝑗
∑ |𝑎𝑖𝑗|
𝑛
𝑖=1  (the largest number of column modulus)  

2. ‖𝐀‖∞ = max
𝑖
∑ |𝑎𝑖𝑗|
𝑛
𝑗=1  (the largest number of row modulus)  

 

The writer chooses to use ‖. ‖∞ to estimate the value 𝜆𝑗,𝑘  . The following is a linear program optimization 

problem for the norm matrix ‖. ‖∞:   

{
 
 

 
            𝑚𝑖𝑛𝜆

𝑚𝑎𝑥
𝑖
|[(∑ 𝑴𝑠

𝑠
𝑘=1 (𝜆). 𝒙𝑛

(𝑘) + 𝒃) − 𝒙𝑛
(𝑗)]

𝑖
|

subject to

            ∑ 𝜆𝑗,𝑘
𝑠
𝑘=−𝑠 = 1, ∀𝑗 = 1,2, . . . , 𝑠

            𝜆𝑗,𝑘 ≥ 0, ∀𝑘

  (5) 

The optimization problem (5) is equivalent to: 

{
 
 
 
 

 
 
 
 𝑚𝑖𝑛

𝜆
𝑚𝑎𝑥
𝑖
|[𝒂(𝑗) − 𝒙𝑛

(𝑗)]
𝑖
|                                                    

subject to                                                                                                       

 𝒂(𝑗) = ∑ ((𝜆𝑗,𝑘 −
1

𝑚−1
𝜆𝑗,−𝑘)𝑷

(𝑗𝑘)
⏟              

𝑴𝑠

𝒙𝑛
(𝑘) +

1

𝑚−1
𝜆𝑗,−𝑘𝑷

(𝑗𝑘)𝟏⏟          
𝒃

)𝑠
𝑘=1

∑ 𝜆𝑗,𝑘
𝑠
𝑘=−𝑠 = 1, ∀𝑗 = 1,2, . . . , 𝑠                                               

𝜆𝑗,𝑘 ≥ 0, ∀𝑗 = 1,2, . . . 𝑠, 𝑘 = ±1,±2, . . . , ±𝑠                           

  (6)
 

The Where 1 is a vector of size mx1 where each entry contains the number 1.
 The linear programming optimization problem (6) can be formulated as a linear programming problem as 

follows:
 

{
 
 
 
 
 
 

 
 
 
 
 
 

𝑚𝑖𝑛
𝜆
 𝑤𝑗                                                                            

subject to                                                                                                 

𝒘𝑗 ≥ 𝒂
(𝑗) − 𝒙𝑛

(𝑗),

𝒘𝑗 ≥ −𝒂
(𝑗) + 𝒙𝑛

(𝑗),                                                            

𝒘𝑗 =

(

 

𝑤𝑗
𝑤𝑗
⋮
𝑤𝑗)

 , 𝑤𝑗  as much as m (condition)                               

𝒂(𝑗) = ∑ ((𝜆𝑗,𝑘 −
1

𝑚−1
𝜆𝑗,−𝑘)𝑷

(𝑗𝑘)𝒙(𝑘) +
1

𝑚−1
𝜆𝑗,−𝑘𝑷

(𝑗𝑘)𝟏)𝑠
𝑘=1

𝑤𝑗 ≥ 0,                                                                         

∑ 𝜆𝑗,𝑘 = 1
𝑠
𝑘=−𝑠 , 𝜆𝑗𝑘 ≥ 0, ∀𝑘                                                 

  (7) 

The following is the optimization problem (7) can be solved by using the linprog facility in Matlab
 

  



ANNISA MARTINA ET AL.: 

MULTIVARIATE MARKOV CHAIN MODEL FOR SALES DEMAND ESTIMATION IN A COMPANY 

52 

 

 

 

IV. RESULTS AND DISCUSSION 

A. The Current State Probability  

The following is the current state probability value for five products in company 1 with each product having 

6 states:
 

𝒙𝑛
(1)
=

(

  
 

0.0818
0.4052
0.0483
0.0335
0.0037
0.4275)

  
 
, 𝒙𝑛
(2)
=

(

  
 

0.3680
0.1970
0.0335
0

0.0037
0.3978)

  
 
, 𝒙𝑛
(3)
=

(

 
 
 

0.1450
0.2045
0.0186
0

0.0037
0.6283)

 
 
 
, 𝑥𝑛
(4)
=

(

  
 

0
0.3569
0.1338
0.1896
0.0632
0.2565)

  
 
, 𝑥𝑛
(5)
=

(

  
 

0
0.3569
0.1227
0.2268
0.0520
0.2416)

  
 

 

 

The greatest probability value for a product describes the state of the product. The current state probability in 

the fiveproducts form company 1: products 1, 2, and 3 are in the state of 6 (very fast moving), while products 

4 and 5 are in state 2 (very slow moving). 
 

B. The Weighted Markov Chain 

After obtaining the transition probability matrix and the state probability vector in part A, the next step is to 

calculate the weighted Markov chain using the two results, according to the previous explanation in part III. 

The following are the weighted Markov chain for the five products in firm 3 with each product having 6 states:
 

𝜆𝑗,𝑘 =

(

  
 

𝜆1,1 𝜆1,2 𝜆1,3 𝜆1.4 𝜆1,5
𝜆2,1 𝜆2,2 𝜆2,3 𝜆2.4 𝜆2,5
𝜆3,1 𝜆3,2 𝜆3,3 𝜆3.4 𝜆3,5
𝜆4,1 𝜆4,2 𝜆4,3 𝜆4.4 𝜆4,5
𝜆5,1 𝜆5,2 𝜆5,3 𝜆5.4 𝜆5,5)

  
 
=

(

 
 

0 0.9874 0 0 0
0 0.9806 0 0 0
0 0.9494 0 0 0.0289
0 0 0 0.0067 0.9933
0 0 0 1 0 )

 
 

 

𝜆𝑗,−𝑘 =

(

  
 

𝜆1,−1 𝜆1,−2 𝜆1,−3 𝜆1,−4 𝜆1,−5
𝜆2,−1 𝜆2,−2 𝜆2,−3 𝜆2,−4 𝜆2,−5
𝜆3,−1 𝜆3,−2 𝜆3,−3 𝜆3,−4 𝜆3,−5
𝜆4,−1 𝜆4,−2 𝜆4,−3 𝜆4,−4 𝜆4,−5
𝜆5,−1 𝜆5,−2 𝜆5,−3 𝜆5,−4 𝜆5,−5)

  
 
=

(

 
 

0.0113 0 0.0113 0 0
0.0194 0 0 0 0
0.0199 0.0018 0 0 0
0 0 0 0 0
0 0 0 0 0)

 
 

 

where 

 

∑ (𝜆𝑗,𝑘 + 𝜆𝑗,−𝑘)
5
𝑘=1 = 1,for each 𝑗, where 𝑗 = 1,2, . . ,5

 

After getting the transition probability matrix 𝑷(𝑗𝑘), the state probability vector 𝒙𝑛
(𝑠)
, the probability weigth 

𝜆𝑗,𝑘 and  𝜆𝑗,−𝑘, then the multivariate Markov chain model simulation can be performed to estimate the sales 

demand for five products in company 1 with each product having six conditions. This model simulation results 

in the form of a probability vector for the future, where the largest probability value in a row (state) is the state 

of the product.

 

C. The Future State Probability Vector 

The following are the future state probability values for the five products in company 1, with each product 

having 6 states: 

𝒙𝑛+1
(1) =

(

  
 

0.0819
0.4039
0.0490
0.0348
0.0039
0.4264)

  
 
, 𝒙𝑛+1
(2) =

(

  
 

0.3662
0.1989
0.0336
0

0.0037
0.3977)

  
 
, 𝒙𝑛+1
(3) =

(

  
 

0.1449
0.2048
0.0184
0

0.0037
0.6283)

  
 
, 𝒙𝑛+1
(4) =

(

  
 

0
0.3586
0.1342
0.1896
0.0632
0.2543)

  
 
, 𝒙𝑛+1
(5)

=

(

  
 

0
0.3569
0.1227
0.2268
0.0520
0.2416)
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The greatest probability value for a product describes the state of the product. The future probability for the 

five products of company 1, namely: product 1, product 2, and product 3 are in state 6 (very fast moving), while 

product 4 and product 5 are in state 2 (very slow moving). 

D. Analysis 

The simulation results in sections A and C can be compared the results of the current state probability vector 

𝒙𝑛with the future state probability vector 𝒙𝑛+1 . As a result, the state probability at company 1 has a state that 

is not much different from the current state. So, it can be concluded that the the future state probability 𝒙𝑛+1is 

stationary. If it is continued until 𝑛 + 5 it will be obtained a table of probabilities as follows: 

TABLE I 

TABLE OF THE STATE PROBABILITY IN COMPANY 1 

t 

The State Probability  

Product 1 Product 2 Product 3 Product 4 Product 5 

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 

n                                                             

n+1                                                             

n+2                                                             

n+3                                                             

n+4                                                             

n+5                                                             

Based on Table.1, the state probability for product 1, product 2 and product 3 in company 1 are stationary at 

state 6 (very fast moving), product 4 and product 5 are stnary at state 2 (very slow moving). So that we get a 

new conclusion that from the state probability 𝒙𝑛+1until  𝒙𝑛+5 are stationary (this strengthens the previous 

conclusion, namely the state probability 𝒙𝑛+1 is stationary). Table 1 can only provide general information about 

the condition of a product. Therefore, to see in more detail the changes in the probability value of circumstances 

from time t=n to t=n+5, the author completes this study by presenting a bar graph of the probability value of 

each state in a company's product as follows:  

 
Fig. 1. The State Probability Graph of Each Product 1 in Company 1 
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Based on Fig. 1 it can be concluded that each state changes from time t=n to n+5, although the value of the 

change is very small. From the graph, it can also be seen that there is a trend, both uptrend and downtrend, such 

as state-1 (no sales volume) showing an uptrend, which means that within a certain period of time product 1 is 

likely to be in state 1. On the contrary, state-6 (very fast moving) showcing a downward trend, which means 

that within a certain period of time product 1 may no longer be in state-6, but has moved to state-1, for example. 

This information can be used by the company to determine the amount of production of a product in the future. 

In addition, this information can also be used in preparing the company's marketing strategy for the product.  

 
Fig. 2. The State Probability Graph of Each Product 2 in Company 1 

 

Fig. 3. The State Probability Graph of Each Product 3 in Company 1 
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Based on Fig.3 it can be seen that the uptrend is only found in state-6 (very fast moving) meaning that within 

a certain period of time product 3 will be in state-6 and will not move to another state. 

 
Fig. 4. The State Probability Graph of Each Product 4 in Company 1 

Based on Fig.4 it can be seen that there is a trend, both an uptrend and a downtrend, such as state-3 (slow-

moving), state-4 (standard) and state-5 (fast moving) experiencing an uptrend which means that within a certain 

period of time product 4 there is a possibility is in state-3, state-4, or state-5. On the other hand, state-2 (very 

slow-moving) experiences a downward trend, which means that within a certain period of time product 4 may 

no longer be in state-6, but has moved to state-3, state-4 or state-5. 

   

Fig. 5. The State Probability Graph of Each Product 5 in Company 1 
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Based on fig.5 it can be seen that there is a trend, both an uptrend and a downtrend, such as state-3 (slow-

moving), state-4 (standard) and state-5 (fast moving) experiencing an uptrend which means that within a 

certain period of time product 4 there is a possibility is in state-3, state-4, or state-5. On the other hand, state-2 

(very slow-moving) experiences a downward trend, which means that within a certain period of time product 

4 may no longer be in state-6, but has moved to state-3, state-4 or state-5. 

 

V. CONCLUSION 

In completing the multivariate Markov chain model, it takes two parameters that must be estimated, namely: 

the transition probability matrix and the weighted Markov chain. The transition probability matrix has been 

calculated in previous studies. The weighted Markov chain is estimated by solving the linear program 

optimization problem using the linprog facility in Matlab. By substituting the transition probability matrix, the 

weighted Markov chain, and the state probability vector into the multivariate Markov chain model, the estimated 

value of future sales demand is obtained. The estimated value of future sales demand is a vector for the 

probability of the state of each product in the future. Where each row is the probability value for each state. If 

the probability value of a row has the greatest value, then the product in the future will be in that state. Based 

on the simulation results of the multivariate Markov chain model, the probability value of the future state 𝑥𝑛+1 

is stationary, that is 𝑥𝑛 and 𝑥𝑛+1the value is not much different. If passed until 𝑥𝑛+5 , the value is not much 

different from 𝑥𝑛 . So, the probability value of the future state is not much different from the probability of the 

present state (stationary). When viewed in more detail using a bar graph, it can be seen that there is an uptrend 

or downtrend in the value of the state probability. This trend can describe the future state probability. 
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