
  
OPEN ACCESS 

 
ISSN 2460-9056 

http://socj.telkomuniversity.ac.id/ijoict/  

 

36 

 

 

Intl. Journal on ICT 

Vol. 7, No. 2, Dec 2021. pp. 36-47 

doi: 10.21108/ijoict.v7i2.584 

 

Received on 06 Oct 2021, Revised on 31 Oct 2021, Accepted and Published on 31 Dec 2021 

A Schema Extraction of Document-Oriented 

Database for Data Warehouse 
A. Nurul Istiqamah1, Kemas Rahmat Saleh Wiharja2* 

12School of Computing, Telkom University 

Jl. Telekomunikasi 1 Terusan Buah Batu, Bandung, Jawa Barat, Indonesia 

* bagindokemas@telkomuniversity.ac.id

Abstract 

The data warehouse is a very famous solution for analyzing business data from heterogeneous 

sources. Unfortunately, a data warehouse only can analyze structured data. Whereas, nowadays, 

thanks to the popularity of social media and the ease of creating data on the web, we are experiencing 

a flood of unstructured data. Therefore, we need an approach that can "structure" the unstructured 

data into structured data that can be processed by the data warehouse. To do this, we propose a 

schema extraction approach using Google Cloud Platform that will create a schema from 

unstructured data. Based on our experiment, our approach successfully produces a schema from 

unstructured data. To the best of our knowledge, we are the first in using Google Cloud Platform for 

extracting a schema. We also prove that our approach helps the database developer to understand 

the unstructured data better. 

Keywords: data warehouse, schema extraction, unstructured data 

 

I. INTRODUCTION 

N the last few years, we have seen a dramatic increase in the volume of unstructured data. The development 

of web 2.0 and 3.0 and the increasing use of the internet by many individuals and organizations have resulted 

in the size of unstructured data having exceeded dramatically that of structured data. Most business 

organizations store unstructured data in document format. These documents are essential in the decision-making 

process [1]. 

Unstructured data is represented by "schema less" data, meaning that each instance in a collection has a 

different "local" schema. An instance can have a different structure even though it can have the same concept 

or specific features from other instance attributes. Thus, schema less databases are preferred for storing 

heterogeneous data with variable schemas and structural forms [2]. 

For analyzing the data and producing valuable insights, a company or an organization utilizes a data 

warehouse. However, since the data warehouse needs to operate on structured data, we need an approach that 

can transform the unstructured data into structured data so it can be stored, analyzed, and managed by a data 

warehouse. 

[3] extracts schema from unstructured data using Hadoop Distributed File System (HDFS). We notice from 

their work, that HDFS has the following limitations: (1). HDFS running on a server, not on the cloud, (2). one 

needs to estimate in advance the requirement of storage and processor prior running the HDFS, (3). One needs 

to do the estimation precisely, otherwise it will be a wasted budget, (4) Map Reduce jobs in HDFS cannot be 

started until we started the Name Node exit safe mode; (5) Hadoop requires regular maintenance; (6) Hadoop 

requires a pretty complex configuration to use other services; (7) Data is stored in computer/server node clusters 

so that they are vulnerable to a single-point failure.  

I 

http://socj.telkomuniversity.ac.id/ijoict/


 

INTL. JOURNAL ON  ICT VOL. 7, NO.2, DEC 2021 37 

 

 

After we understood that HDFS is not the best choice, we decided to explore similar platforms such as Google 

Cloud Platform (GCP). We found out that GCP is better than HDFS for identifying the graphic structure of an 

unstructured document and generating a schema for the following reasons: (1) GCP costs less because users 

only pay for what they use rather than over-buying hardware; (2) GCP can start the task node as soon as the 

task node starts; (3) in GCP, users do not need to perform routine maintenance because the site reliability 

engineering (SRE) team from Google has done this work for users; (4) GCP has better interoperability as users 

can easily manage data stored in Big Query using other GCP services such as Dataflow; (5) GCP has higher 

data availability because GCP cloud storage is not prone to single point failure or even cluster failure.  

We also found out that hitherto, there is no research that uses GCP for generating schema. Therefore, our 

contributions are twofold: (1).  We are the first in using GCP for extracting schema, and (2). We prove that the 

usage of schemas can help developers understand the unstructured data better and faster. 

In this research, we use Big Query to process data and extract schemas. As for the datasets, we use 

bibliographic information from Database System and Logic Programming (DBLP)1 and Microsoft Academic 

Knowledge Graph (MAKG)2. 

The rest of the paper is structured as follows. Section 2 presents some related work related to our topic, section 

3 explains our approach, section 4 describes the results obtained in this study, and section 5 shows the 

conclusion from this research.  

II. RELATED WORKS 

In this section, we review several important works that are related to our paper. We begin our discussion with 

explaining NoSQL, Data Warehouse, and then Schema Extraction from Unstructured Data.   

A. NoSQL 

According to [4], "NoSQL is a non-relational database management system, faster retrieval of information 

from databases." One can relate NoSQL with its predecessor, the relational database system.  NoSQL databases' 

characteristics are often used in non-relational, open-source distributed, and high-performance databases 

linearly. Therefore, NoSQL does not organize data in relational tables, and everyone can access the source code 

freely, update it as needed and compile it. 

There are four data models in NoSQL data models, such as document-oriented, column-oriented, object-

oriented, and graph-oriented [5]. 

1) Document-Oriented Database: According to Oxford Dictionary [6], a document is "a piece of written, 

printed, or electronic matter that provides information or evidence or that serves as an official record." The 

examples of documents are as follows: a book, a form, a card, or a meeting summary. Simply put, a document-

oriented database is a database that we use to store and organize documents. In this type of database, the data 

hierarchy is the pair of keys and values, document, and collection (group of a similar document. Whereas in 

relational databases, the data hierarchy is row, table, and database (relation among tables). 

2) Column-Oriented Database: A column-oriented or columnar database is a database that stores data tables 

by column rather than row. In simple words, a column-oriented database is a transpose of a row-oriented 

database [7]. 

For example, we give a simple illustration in Table I. This table includes an employee identifier (EmpId) and 

name fields (LastName and FirstName).  
  

 
1 https://dblp.org/ 
2 https://makg.org/ 



 
ISTIQAMAH  ET AL.: 

A SCHEMA EXTRACTION OF DOCUMENT-ORIENTED DATABASE FOR DATA WAREHOUSE  

38 

 

 
TABLE I 

A SIMPLE ILLUSTRATION OF EMPLOYEE TABLE 

RowId EmpId FirstName LastName 

001 10 John Doe 

002 12 Jane Doe 

003 22 Richard Roe 

A row-oriented database system is designed to return data for an entire row or record efficiently. A row-

oriented database matches the typical use case where the system attempts to retrieve information about a 

particular object. A standard method of storing a table is to serialize each row of data, like Fig. 1. 

 

Fig. 1 How a row-oriented database stores data 

In a column-oriented database, all values in a column are physically grouped. For example, all values in 

column 1 are grouped, then all column 2 are grouped, etc. It allows specific data elements, like FirstName, to 

be accessed in columns as a group rather than individually row-by-row. For our example table, a column-

oriented database would store the data like Fig. 2. 

 

Fig. 2  How a column-oriented database stores data 

3) Graph-Oriented Database: A graph database (GraphDB) is a database that uses a graph structure 

containing nodes, edges, and properties to represent and store information. GraphDB is needed for large-scale 

graph data, especially network biology researchers and social networking sites like Facebook and Twitter. 

GraphDB maps objects directly to applications and is more intuitive to describe associative data sets [4]. 

B. Data Warehouse 

A data warehouse is a relational database designed for query and analysis purposes. The data warehouse 

contains historical data originating from transaction data sources and various other data sources. Data 

warehouses separate analytical workloads from transactions and allow companies to combine data from 

multiple sources [8]. 

Data warehouse supports the provision of appropriate data and transforms data into highly accurate 

information and can be used to find patterns and facts to identify problems and provide data and information at 

the right time [9]. 

To be able to analyze the data in the data warehouse, a schema is needed. The structured data schema is in 

the ER Diagram, which is not discussed in this study. Meanwhile, the schema of the unstructured data is 

explained in the next sub-chapter. 

C. Schema Extraction from Unstructured Data 

A schema can be equivalent to metadata because it has essential information in a piece of data such as 

structure, timing relationships, etc. In an unstructured data, the schema is in the data or document itself, we call 

it a local schema. To find out the arrangement of data or schemas in a document-oriented database, we need an 

approach called schema extraction. 

In this section, we review the existing work on schema extraction from a NoSQL schemeless database. [10] 

proposes an extraction, transformation, and loading strategy to integrate unstructured data into a data 



 

INTL. JOURNAL ON  ICT VOL. 7, NO.2, DEC 2021 39 

 

 

warehouse—an approach based on the MapReduce programming system for parallelizing ETL streams and the 

Hadoop paradigm. ETL tools are frequently used in data warehousing, where data is assembled from different 

sources to perform data analytics. The unstructured data is extracted using the MapReduce program and stored 

in the HDFS, where it is processed, analyzed, and transformed by applying specific filters. Finally, the data is 

loaded into the organization's data warehouse. However, this approach does not show the heterogeneity of the 

dataset. 

Similarly with [10], [11] developed the ETL process for unstructured data in a data warehouse using the 

MapReduce programming system. They use Pig Latin for the querying process and big data analytics using Pig 

Latin3.  

[12] proposes two aggregation operations for extracting a schema from a document-oriented database. Their 

approach took almost 1 hour to process 17 million documents. [13] proposed hybrid (path-node) labeling to 

map document data from XML to a relational database. Their approach applies node-labelling to annotate 

positions of nodes in a data model and adopts path-labeling to boost performance of the algorithm.   

[1] extracts an XML schema by using a tokenization process that uses a stemming algorithm to reduce words 

to stem or root forms. Then, they correlate the data linguistically by using WordNet to enable integration 

between multiple data sources and generate schemas without domain-specific knowledge. 

[3] extracts the schema using the MapReduce paradigm from HDFS. They define two-step processing using 

the Map() function and the Reduce() function in this model. The MapReduce system runs on a cluster type 

platform, then automatically parallelizes the processes by cutting the processes into sub-processes where each 

will be assigned to a node (the map function runs on the cluster machine). Some of the results will be sent to a 

reducer (reducing the tasks performed on the cluster machine) to produce the data schema. 

D. Google Cloud Platform 

Google Cloud Platform (GCP) is the common name for cloud services that Google provides with "pay as per 

use" services, flexible infrastructure, other services such as high-level data analysis, machine learning that 

supports Google search and Gmail. The services provided by GCP, one of which are Cloud Storage, App 

Engine, and BigQuery [14]. 

1) Cloud Storage: Cloud Storage is a service for storing objects in Google Cloud. The Objects will be stored 

in a container called a bucket. All buckets will be associated with projects that can be grouped under an 

organization. 

Once a project and a Cloud Storage bucket have been created, objects can be uploaded and downloaded from 

the bucket. Cloud Storage also provides services that can grant permission to make data accessible to specified 

members or accessible to everyone on the public internet (such as hosting a website). 

Cloud Storage offers durable and highly available object storage for both structured and unstructured data. 

For example, the data are log files, database backup and export files, images, and other binary files. 

2) App Engine: Create and deploy applications in a fully managed platform. Quickly scale application from 

zero to planetary without worrying about managing the underlying infrastructure. With "zero servers" 

management and zero-configuration deployment, developers focus solely on building advanced applications 

with no management costs. App Engine makes it easy for developers to be more productive and dynamic by 

developing popular languages and a wide range of developer tools. 

3) BigQuery: Storing and querying large data sets can be time-consuming and expensive without the proper 

hardware and infrastructure. BigQuery is an enterprise data warehouse that solves this problem by enabling 

super-fast SQL queries using the processing power of Google's infrastructure. Move the data to BigQuery, and 

the data will be handled by default. Accessing the projects and data can be controlled based on need, such as 

granting others access rights to view and query data stored in the data warehouse. 

 
3 https://pig.apache.org/docs/r0.17.0/basic.html 



 
ISTIQAMAH  ET AL.: 

A SCHEMA EXTRACTION OF DOCUMENT-ORIENTED DATABASE FOR DATA WAREHOUSE  

40 

 

 
BigQuery can be accessed using the Cloud Console, the bq command-line tool, or making calls to the 

BigQuery REST API using various client libraries such as Java, .NET, or Python. Various third-party tools can 

interact with BigQuery, such as visualizing or loading data. To getting started with BigQuery, there is no need 

to use any resources, such as disks and virtual machines. 

E. The Format of Files 

1) XML: XML stands for eXtensible Markup Language, which is a markup language much similar to HTML. 

XML was created to store and transport data and to be self-descriptive [15]. An XML file contains a formatted 

dataset intended to be processed by a website, web application, or software program. XML files can be thought 

of as text-based databases. 

2) RDF: The Resource Description Framework (RDF) is a language standardized by the W3C to represent 

every piece of information about a Web resource [16]. An RDF file is a document written in the Resource 

Description Framework (RDF) language, which represents information about resources on the web. It includes 

information about a website in a structured format called metadata. RDF files may consist of a site map, an 

updated log, page descriptions, and keywords. 

3) JSON: JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is simple for humans 

to read and write and for machines to parse and generate. JSON is a text format that is independent of any 

programming language. It uses a language style usually used by C-family programmers, including C, C++, C#, 

Java, JavaScript, Perl, Python, etc. Because of these characteristics, it makes JSON ideal as a data-exchange 

language [17].  

III. OUR APPROACH 

We propose the usage of Google Cloud Platform to extract a schema from a document. The components of 

our approach are as follows:  Cloud Storage, App Engine, and BigQuey, flask module, json module, and three 

python modules (load_data_from_dblp(), load_data_from_makg() and load_data_to_bigquery()). 

Based on Fig. 3, our approach works as follow: (1) collecting documents, (2) preprocessing documents, (3) 

uploading documents to Cloud Storage, (4) extracting and transforming schema in App Engine, and (5) loading 

data and schema from App Engine to BigQuery. 

The complete steps of our approach are presented in Fig. 3. The first step is to collect or download documents 

from the internet. The type of documents that we collect is XML and RDF. After being collected, the next step 

is to preprocess the documents. In the document preprocessing step, we use EasyRDF4 and Code Beautify5 to 

convert the document from its raw format into JSON.  

 
Fig. 3 Steps for extracting schema from a document 

 
4 https://www.easyrdf.org/converter 
5 https://codebeautify.org/xmltojson 



 

INTL. JOURNAL ON  ICT VOL. 7, NO.2, DEC 2021 41 

 

 

The third step is uploading the documents to Google Cloud Storage which supports unstructured data. The 

information stored here is the document that encodes and encapsulates the data in a semi-structured format 

(such as JSON). A document of different structures can be stored in the same set. As in Fig. 4, a document 

consists of fields and their associated values, which are considered a hierarchy of elements that can be atomic 

values or composite values. 

 

Fig.4 A structure of a document-oriented database 

We divide the fourth step into more detailed steps as follows: (i). analyzing the characteristics of different 

documents; (ii). extracting all the keys and values from the documents; (iii). sorting the key and values in 

ascending mode. We call this step (iii) as transform 1; (iv). removing duplicate keys and values. We call this 

step (iv) as transform 2. We implement these four sub-steps using python. The result of step 4 is a generic 

schema (pair of keys and values) that encompasses all the keys and values from all the documents. This generic 

schema will be loaded together with the documents to a data warehouse. For keys that have the same meaning 

but different labels, we make a script to detect it, and then we give a new common label for both keys.  

 

Fig. 5 Extracting and transforming schema in App Engine 

Finally, using load_data_to_bigquery(), we pass this schema and data into Big Query for easy analysis and 

gain insight. 

IV. RESULTS AND DISCUSSION 

For evaluating our approach, we use Database Systems and Logic Programming (DBLP) and Microsoft 

Academic Knowledge Graph (MAKG) documents. DBLP and MAKG are online references for open 

bibliographic information about scientific publications. We select ten documents for each dataset. 



 
ISTIQAMAH  ET AL.: 

A SCHEMA EXTRACTION OF DOCUMENT-ORIENTED DATABASE FOR DATA WAREHOUSE  

42 

 

 
The data structures (set of keys and values) of a document from each dataset have different characteristics, 

as shown by Fig. 6. 

  

 

Fig. 6 An example of a document of DBLP and MAKG dataset 

In Fig. 6, the DBLP and MAKG documents have different hierarchical depths. The deeper the hierarchy, the 

easier it is to model the details. Furthermore, the document with a deeper hierarchy has a better organization of 

the keys and values when it comes to multiple values (please see the author key in dblp1.json as an example).  

We also can present the document from both datasets in a tree format (please see Fig. 7). In Fig. 7, the root 

of dblp.json, which is in hierarchy-0, is "dblp". Going deeper, in hierarchy-1, an "article" node has a node child 

of the needed information placed at hierarchy-2. Unlike makg.json, which has the root "Description" in 

hierarchy-0 and the nodes of the necessary information at hierarchy-1. Thus, the depth of a DBLP document is 

greater than the depth of a MAKG document. 

 

 

Fig. 7 A tree version of a document of DBLP and MAKG dataset 

To evaluate the quality of the schema produced by our approach, we use a third software application called 

Oxygen6. Oxygen is a simple XML editor that can validate a schema of a document. It took 0.49 seconds for 

Oxygen to validate the generic schema produced by our approach, and Oxygen reports that our schema consists 

of 18 keys and 20 values (per row) is valid. 

Validating the document schema by selecting "Validate with" in the "Validation" dropdown menu. After the 

"Validate with" dialog box opens, the "URL" section is filled with the schema location that has been 

 
6 http://oxygenxml.com/ 



 

INTL. JOURNAL ON  ICT VOL. 7, NO.2, DEC 2021 43 

 

 

downloaded from BigQuery, and "Schema type" is filled with the schema data type, which in this case is JSON, 

then click OK. 

 

Fig. 8 Illustration expanding all tags by Oxygen 

Oxygen validates the schema file by expanding all tags (like Fig. 8) on the included module to validate the 

entire schema hierarchy. Validation issues are highlighted directly in the editor, making it easy to find and fix 

any issues. 

To evaluate the usefulness of our approach, we asked ten developers who understand the concepts of the 

JSON and SQL languages to formulate queries with or without looking at generic schemas. We want to test 

whether schema helps and speeds up developers in preparing queries or not. Each developer is given a document 

containing a questionnaire, instructions, and expected results in this test scenario. There were two experiments 

carried out. In the first experiment, developers were given ten DBLP datasets and ten MAKG datasets and asked 

to formulate queries using the programming language they were familiar with. And then, in the second 

experiment, the developer is given a BigQuery GCP account to write queries by observing the generic schema 

and viewing the datasets in the data warehouse. The system will automatically record query writing on 

BigQuery. The queries that need to be formulated are in Table II: 

TABLE II 

FORMULATED QUERIES 

1. Make a list of titles starting with the author's name 

'Achmad' 

 

2. Make a list of titles that have the word 'Indonesia' 

  
 

 

 

 

 

3. Make a list of doi and ee 4. Make a list of publishers 



 
ISTIQAMAH  ET AL.: 

A SCHEMA EXTRACTION OF DOCUMENT-ORIENTED DATABASE FOR DATA WAREHOUSE  

44 

 

 

 
 

 
 

5. Look for data with the author's name 'Ahmad R. 

Pratama' 

 
 

6. Search data with publisher 'Elsevier' 

 
 

 

7. Look for data with a volume of more than 30 

 
 

 

 

 

8. Look for the author's name from the article entitled 

'Integrative Factors of E-Health Laboratory 

Adoption: A Case of Indonesia' 

 
 



 

INTL. JOURNAL ON  ICT VOL. 7, NO.2, DEC 2021 45 

 

 

9. Look for data with the author's name 'Muhammad 

Bagus Andra' 

  
 

10. Look for data with the journal name 'Data' 

  
 

With a different schema for each dataset document, formulating a query without a schema requires longer 

because the developer needs first to find or guess the intended key, especially when the key is not found in the 

opened dataset document. We report the results of the first and second experiments in the "Without schema" 

and "With schema" columns. 

TABLE III 

THE AVERAGE TIME TO WRITE QUERIES 

 Without schema With schema 

The average time to write 10 queries 51,41 minutes 15,86 minutes 

 

From the results in Table III, ten queries were conducted by ten developers with categories "with schema" 

and "without schema". Based on the table above, the absence of a schema requires developers to search for 

attributes manually and results in an average time of 51,41 minutes. On the other hand, the schema makes it 

easier for developers to quickly understand and find the features/keys and values they are looking for, thereby 

reducing the query writing time by about 35,55 minutes. From this usefulness evaluation, we proved that our 

approach helps the developers formulate queries better and faster. 

In producing a generic schema (as shown in Fig. 9), we notice some interesting findings that we need to report 

as follows. 

(1). Keys that have different labels but similar meanings. The key "pages" in DBLP and the keys 

"startingPage" and "endingPage" in MAKG have different labels, but they are pointing to similar meanings. 

The key "pages" tells us the range of a paper, ex: "11-15". Whereas the value of the key "starting page" and 

"ending page" are "11" and "15" respectively. Therefore, for this case, we choose "pages" as the label in the 

generic schema due to its brevity. 

(2). Keys that have different labels but the same meaning. The key "ee" in DBLP and the key "doi" in MAKG 

refers to the same purpose, which is a unique string that identifies where a resource is located on the internet 

[18]. For this case, we need to manually choose which label we will use in the generic schema. 



 
ISTIQAMAH  ET AL.: 

A SCHEMA EXTRACTION OF DOCUMENT-ORIENTED DATABASE FOR DATA WAREHOUSE  

46 

 

 

 

Fig. 9 A transformation schema 

V. CONCLUSION 

This paper proposes an approach that extracts data warehouse schema from a document-oriented database 

using Google Cloud Platform as a service. The proposed method consists of five main steps: collecting NoSQL 

documents, document preprocessing, storing documents in Cloud Storage, extracting and transforming 

schemas, and loading the data and schemas from App Engine to BigQuery data warehouse. 

We evaluate our approach using DBLP and MAKG datasets. Although DBLP and MAKG have different data 

characteristics and depth, our approach successfully produces a generic and validated schema. We tested the 

usefulness of this schema to a group of developers, and we found out that the query writing process using 

schema is 35,55 minutes faster than writing without schema. It proves that the schema of a document-oriented 

database helps the developers understand and formulate the queries better and quicker. 

There are two potential paths for future work: (1). automating and integrating the schema extraction process 

for document-oriented databases with a data warehouse, (2). creating a generic extraction framework for other 

types of databases, such as graph, column-oriented, or key values databases. 

 

VI. DATA AND COMPUTER PROGRAM AVAILABILITY 

Data can be accessed in the following site bit.ly/datasetdblpmakg and github.com/anurulistiqamah/lastpro. 

 

REFERENCES 

 

[1] A. A. Alqarni and E. Pardede, “Integration of data warehouse and unstructured business documents,” 

in Proceedings of the 2012 15th International Conference on Network-Based Information Systems, 

NBIS 2012, 2012, pp. 32–37. doi: 10.1109/NBiS.2012.59. 

[2] E. Gallinucci, M. Golfarelli, and S. Rizzi, “Schema Profiling of Document-Oriented Databases,” 

Information Systems, vol. 75, pp. 13–25, Jun. 2018, doi: 10.1016/j.is.2018.02.007. 



 

INTL. JOURNAL ON  ICT VOL. 7, NO.2, DEC 2021 47 

 

 

[3] S. Bouaziz, A. Nabli, and F. Gargouri, “Design a Data Warehouse Schema from Document-Oriented 

Database,” in Procedia Computer Science, 2019, vol. 159, pp. 221–230. doi: 

10.1016/j.procs.2019.09.177. 

[4] M. I. Halim, “Penerapan Document Oriented Database (NOSQL) Dalam Pembuatan E-LIBRARY 

Universitas Pendidikan Indonesia Menggunakan Mongodb Dan PHP,” 2016. 

[5] S. Tiwari, Professional NoSQL. Indianapolis: John Wiley & Sons, Inc., 2011. 

[6] A. Stevenson, Oxford Dictionary of English. USA: Oxford University Press, 2010. 

[7] “Column-oriented DBMS,” Wikipedia, 2021. https://en.wikipedia.org/wiki/Column-oriented_DBMS 

(accessed Aug. 07, 2021). 

[8] K. Ibrahim Mohammed, “Data Warehouse Design and Implementation Based on Quality 

Requirements,” International Journal of Advances in Engineering & Technology, vol. 7, pp. 642–651, 

2014, [Online]. Available: https://www.researchgate.net/publication/330666318 

[9] S. H. A. Aloush, “The Role of Data Warehouse in Decreasing the Time,” Australian Journal of Basic 

and Applied Sciences, vol. 9, no. 5, pp. 216–219, 2015. 

[10] P. S. Kumar, M. Antigopal, and S. Vetrivel, “Extract Transform and Load Strategy for Unstructured 

Data into Data Warehouse Using Map Reduce Paradigm and Big Data Analytics,” International 

Journal of Innovative Research in Computer and Communication Engineering, vol. 02, no. 12, pp. 

7456–7462, Jan. 2015, doi: 10.15680/ijircce.2014.0212030. 

[11] H. Saradava, A. Patel, and R. Aluvalu, “A Survey on ETL Strategy for Unstructured Data in Data 

Warehouse using Big Data Analytics,” 2016. 

[12] A. A. Frozza, R. dos S. Mello, and F. de S. da Costa, “An Approach for Schema Extraction of JSON 

and Extended JSON Document Collections,” Jul. 2018. doi: 10.1109/IRI.2018.00060. 

[13] H. Zhu, H. Yu, G. Fan, and H. Sun, “Mini-XML: An efficient mapping approach between XML and 

relational database,” May 2017. doi: 10.1109/ICIS.2017.7960109. 

[14] “Apa itu GCP?,” Cloud Ace Indonesia, 2021. https://id.cloud-ace.com/id/what-is-gcp-id/ (accessed 

Aug. 07, 2021). 

[15] “XML Introduction,” W3Schools, 2021. https://www.w3schools.com/xml/xml_whatis.asp (accessed 

Aug. 10, 2021). 

[16] F. Manola and E. Miller, “RDF Primer,” W3C, 2004. https://www.w3.org/TR/rdf-primer/ (accessed 

Aug. 10, 2021). 

[17] “JSON,” Json.org. https://www.json.org/json-en.html (accessed Sep. 10, 2021). 

[18] “DOIs: What they are and how to cite them: Overview,” Montana State University, 2021. 

https://guides.lib.montana.edu/doi/ (accessed Aug. 10, 2021). 

  
 


