Analisis dan Implementasi Metode Gabor Filter dan Support Vector Machine pada Klasifikasi Sidik Jari

Intan Raharni Wijaya, Untari Novia Wisesty, Said Al Faraby

Abstract


Pengolahan citra digital semakin diminati, salah satunya pada sistem biometrik. Sistem biometrik merupakan sistem dalam pengenalan berdasarkan pola atau ciri khusus yang dimiliki makhluk hidup terutama manusia. Jenis identifikasi biometrik yang umum digunakan adalah pengenalan sidik jari. Sidik jari banyak digunakan dalam kehidupan sehari-hari selama lebih dari 100 tahun karena penerimaan yang tinggi, permanen, akurat, dan keunikan. Kelebihan sidik jari tersebut disebabkan oleh minutiae yang merupakan garis atau guratan pada sidik jari yang berbeda-beda setiap individu. Klasifikasi sidik jari secara umum terbagi menjadi dua tahap yakni ekstraksi fitur serta klasifikasi fitur.
 
 Ektraksi fitur dapat dilakukan dengan cara filter seperti gabor filter dengan empat sudut orientasi yang berkisar 0, 45, 90 dan 135 derajat. Hasil dari ekstraksi ciri akan klasifikasi dengan tujutan identifikasi. Metode Support Vector Machine (SVM) dapat digunakan sebagai classifier untuk sistem biometrik sidik jari. SVM memiliki kernel trick yang berpengaruh pada akurasi yang dihasilkan. Digunakan SVM multiclass metode one-against-all dalam klasfikasi sidik jari untuk 25 kelas. Akurasi terbesar diperoleh oleh kernel Radial Basis Function (RBF) sebesar 73% untuk data awal dan 76% untuk penambahan data augmentasi

Full Text:

PDF


DOI: http://dx.doi.org/10.21108/INDOJC.2017.2.2.176

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Intan Raharni Wijaya

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.