
1

Column-Level Database Encryption Using
Rijndael Algorithm and Dynamic Key on

Learning Management System
Ariva Syam Mursalat 1, Ari Moesriami Barmawi 2, Prasti Eko Yunanto 3

School of Computing, Telkom University
Bandung, Indonesia

1 arivasyam@student.telkomuniversity.ac.id
2 mbarmawi@melsa.net.id

3 gppras@telkomuniversity.ac.id

Abstract
The course management system’s goal is to help learning activities. The system helps to
manage tasks, the grading process, and user communications. To avoid unauthorized data
access, the course management system needs a mechanism to protect the password that is
used in the system’s login process. Database encryption using Rijndael algorithm is proposed
by Francis Onodueze et al. to protect the data. A key is needed for the encryption process,
and the key has to be kept secret. Thus, when the key is static, it is vulnerable against key
guessing attacks. To overcome the static key’s drawback, a dynamic key generation using
Hash Messages Authentication Code - Deterministic Random Bit Generator (HMAC-DRBG)
is proposed because it can generate keys periodically. Based on the evaluation, the probability
of success key guessing attack using the proposed method is less than using the previous
method proposed by Francis Onodueze et al., while the time complexity of those methods is
similar.

Keywords: Rijndael, HMAC-DRBG, Pseudorandom-bit.

Abstrak
Tujuan sistem manajemen pembelajaran adalah untuk membantu kegiatan belajar. Sistem
membantu mengelola tugas, proses penilaian, dan komunikasi pengguna. Untuk menghin-
dari akses data yang tidak sah, sistem manajemen pembelajaran membutuhkan mekanisme
untuk melindungi password yang digunakan dalam proses login sistem. Enkripsi database
menggunakan algoritma Rijndael diusulkan oleh Francis Onodueze dkk. untuk melindungi
data. Sebuah kunci diperlukan untuk proses enkripsi, dan kunci tersebut harus tetap rahasia.
Jadi, ketika kuncinya statis, ia rentan terhadap serangan menebak kunci. Untuk mengatasi
kelemahan kunci statis, diusulkan pembuatan kunci dinamis menggunakan Hash Messages
Authentication Code - Deterministic Random Bit Generator (HMAC-DRBG) karena dapat
menghasilkan kunci secara berkala. Berdasarkan hasil evaluasi, peluang sukses terhadap peny-
erangan penebakan kunci dari metode yang diusulkan lebih kecil dibandingkan dengan metode
yang diusulkan sebelumnya, dimana kompleksitas waktu yang dibutuhkan oleh kedua metode
sama.

Kata Kunci: Rijndael, HMAC-DRBG, Pseudorandom-bit.

OPEN ACCESS

ISSN 2460-9056
socj.telkomuniversity.ac.id/indojc

Ind. Journal on Computing
Vol. 7, Issue. 1, April 2022. pp. 15-30

doi:10.34818/indojc.2022.7.1.609

Received on Januari, 2022. Accepted on March, 2022

http://socj.telkomuniversity.ac.id/indojc

I. INTRODUCTION

THE course management system’s goal is to help learning activities. The system helps to manage
tasks, the grading process, and user communications. To be able to access the course management

system, a user has to go through the registration and the login process, where the user has to insert
their username and password into the system. The username and password combination denotes a unique
identity of the user, such that the user can access the course management systems content. Thus, the
password has to be protected to avoid unauthorized data access.

To avoid unauthorized data access, the course management system needs a mechanism to protect the
username and password data combination in the database. There are many methods proposed in order to
protect the data. One of the methods is the column-level database encryption method proposed by Francis
Onodueze [1]. Francis Onodueze et al. proposed column-level database encryption using the Rijndael
algorithm [1]. To do the encryption process, the Rijndael algorithm needs a key. The encryption process
that was proposed by Francis Onodueze et al. has a drawback, where the key used in the encryption
process is static. A static key would not change throughout the entire process, such that it is vulnerable
against key guessing attacks. Therefore, the dynamic key generation is necessary.

The dynamic generation is conducted by generating random numbers. Several techniques have been
proposed including True Random Generators (TRNG) and Deterministic Random Bit Generators (DRBG).
TRNG has drawbacks that must be considered, where the hardware requires a lot of energy and inadequate
output [2]. In addition to TRNG, there is another research on random numbers proposed [3]. This study
uses Quantum Random Number Generator (QRNG) [3], which is not suitable to use in this study. This
happens because the method uses bottleneck communication so that the cost required to implement this
method is quite large, so it is not commensurate with the value of the data being secured [3]. In addition,
there is also a method proposed by Liu et al [4], which uses randomization function in the C++ Library
to generate the dynamic key. In the research proposed by Katherine ye et al. [5], it was explained that
random values needed a cryptographic function to generate key, nonce, and initialization vectors. Most
cryptographic devices rely on pseudorandom generators, one of which is the Deterministic Random Bit
Generator (DRBG). DRBG is used to change the level of randomness of random numbers from small to
large levels of randomness at the output of pseudorandom.

To overcome the static key’s drawback, a dynamic key generation using Hash Message Authentication
Code-Deterministic Random Bit Generator (HMAC-DRBG) is used. The selection of HMAC-DRBG is
based on the ability of this method to generate random numbers periodically [6]. The random number
is further used as the key. Thus, the key used in Rijndael is dynamic. HMAC-DRBG is used because it
does not require high energy and cost as TRNG [2] and QRNG [3]. Meanwhile, the method proposed
by Liu et al. [4] has a high probability of success in guessing the key.

II. LITERATURE REVIEW

In this section, the theories used in this research are discussed. The discussion is divided into three
sub-sections, namely previous research [1] and theoretical basics.

A. Rijndael Algorithm for Database Encryption on a Learning Management System [1]

In 2017, Francis Onodueze et al. [1] proposed a method for database encryption on a learning (course)
management system [1]). This research is used as our previous method. Francis Onodueze et al. proposed
a column-level database encryption on learning management system using the Rijndael algorithm, where
encryption is used in the registration and login processes. Encrypted data in the database is a password.
In the registration process, the password field is filled with the password encryption result string. While
in the login process, the password matching process is carried out by comparing the similarity between
the data from the password entered by the user and the decrypted data (encrypted password that has been
stored in the database). If the results are similar, the user will be considered as a legitimate user, while
if they are not similar, then the user will be considered as an unauthorized user.

Mursalat et al.
Column-Level Database Encryption... 16

Francis Onodueze et al [1] implemented the database access security layer shown in figure 1. At each
layer, there are rules defined for databases and applications, where these rules aim to ensure the security
of user data.

Fig. 1. Access layer database security implemented by Francis Onodueze et al. [1].

1) Encryption of Registration Data: The encryption process on the registration data aims to encrypt
the password, where the password data (plainText) obtained from the registration process is sent to the
hash function to generate a string called clearText. The encryption stage in the encryption function begins
with the declaration of the encryption key stored in the encryptionKey variable. Then the clearText is
encrypted using Rijndael algorithm and encryptionKey. The output in the form of cipherText is stored
in the password column in the database. while the encryption key is stored in the database used in the
login process. Algorithm 1 shows the stages of the encryption in the registration process.

Algorithm 1 Encryption of Registration Data
Input : plainText Output : cipherText, encryptionKey

1: encryptionKey ← keyGenerator() ▷ random key generation
2: clearText← hashFunction(plainText)
3: cipherText← rijndaelEncryption(encryptionKey, clearText)
4: return cipherText, encryptionKey

2) Decryption of Login Data: During the login process, password decryption is performed to decrypt
the encrypted clearText and further compare the similarity between the clearText used in the login phase
and the clearText obtained by decrypting the cipherText stored in the database. The input from this
process is the password string (login Password) which is obtained from the login page, while the data
in the database is taken in the form of cipherText and encryption key. If the value of the clearText are
similar, the login is successful, and otherwise, the login fails. Algorithm 2 shows the steps of decryption
process on login data.

Ind. Journal on Computing Vol. 7, Issue. 1, April 2022 17

Algorithm 2 Decryption of Login Data
Input : loginPassword Output : loginStatus

1: encryptionKey, cipherText← getfromdatabase
2: plainText← rijndaelDecryiption(encryptionKey, cipherText)
3: loginPassword← hashFunction(loginPassword)
4: if plainText == loginPassword then
5: return "Login Success
6: else
7: return "Login Failed"
8: end if

B. Dynamic Encryption Algorithm Based on Rijndael

In 2012, Zhiqiang Liu et al. proposed a dynamic encryption based on Rijndael [4]. The algorithm
uses a key to encrypt plaintext twice, such that they have two ciphertext as the result. Zhiqiang Liu et
al. introduces a function for generating the dynamic key based on random function in C++ library [4],
where the probability of success key guessing attack is greater than 1/1024. The detail of Liu’s method
is shown on Algorithm 3

Algorithm 3 Dynamic Encryption Algorithm Based on Rijndael
1: procedure AES_encryptkey(byte out[16], const byte key[32])
2: i← 0
3: j ← 0
4: while i < 16 do
5: srand(unsigned)time(NULL)
6: j ← rand() mod 96 ▷ Generating random numbers from
7: out[i]← key[i+ 16] ⊗ sjbox[j]
8: key[i+ 16]← sjbox[j]
9: i← i+ 1

10: end while
11: end procedure

C. Database Enryption

A database is a collection of data items that provides an organizational structure for information storage
[7]. Information stored in databases is often considered as a valuable and important corporate resource
[8]. Encryption is one of the methods to secure the information by changing the form of the data to
maintain confidentiality, integrity, and authenticity [1]. Encryption on the database depends on the nature
of the data stored (in this case, the data is sensitive or insensitive) [9]. Sensitive data is data that needs
to be protected from the access of unrelated parties, while insensitive data is data that does not need
special security protection. The more data that is encrypted, the more expensive the costs(such as time
and computation) required. Database encryption is divided into 4 levels [1], which are column, row,
extreme column level, and database level encryption.

The level of encryption used can be adjusted. The higher the value of the data, the more threats
the system will face. According to [10], the 10 most common threats to databases are SQL injection,
excessive privilege abuse, abuse of legitimate privileges, privilege escalation, exploitation of vulnerabil-
ities in vulnerable or incorrectly configured databases, weakness of the native audit, denial of Service,
vulnerabilities of database communication protocols, unauthorized copying of sensitive data, and exposure
of backup data.

1) Column-level encryption: At the column level encryption, the encryption process is carried out to
protect certain columns by using a key. Protected fields can be passwords, usernames, ID, credit card

Mursalat et al.
Column-Level Database Encryption... 18

numbers, and other important data. The illustration of database encryption at the column level can be
seen in table I.

TABLE I
EXAMPLE OF COLUMN-LEVEL DATABASE ENCRYPTION IN THE PASSWORD FIELD

Email Name Department Password
Arvsyam13@gmail.com Arivan Syam informatics xxxxxxxx
jaylaolshop@gmail.com Jihan Lailatul electro xxxxxxxx

2) Row-level encryption: At the row-level encryption, the encryption process is carried out to protect
every row in the database by using a key. This method is suitable for small databases and all of its
contents are included in very important data. An illustration of row-level database encryption can be seen
in table II.

TABLE II
SAMPLE ROW-LEVEL ENCRYPTION

Email Name Department Password
xxxxxx xxxxxx xxxxxx xxxxxxxx
xxxxxx xxxxxx xxxxxx xxxxxxxx

3) Extreme column-level encryption: Extreme column-level encryption is a technique that encrypts
specific columns using a different key for each encrypted column. The illustration of the extreme column-
level database encryption in the email and password columns can be seen in table III.

TABLE III
EXAMPLE OF EXTREME COLUMN-LEVEL ENCRYPTION IN THE EMAIL AND PASSWORD FIELDS

Email Name Major Password
Key Key2 ariva informatics Key1
Data xxxxxxxx Jihan Lailatul electro xxxxxxxx
Data xxxxxxxx Ariva Syam informatics xxxxxxxx

4) Database level encryption: Database level encryption is a technique that encrypts the framework
of the database.

D. Rijndael Algorithm

The Rijndael algorithm is also known as Advanced Encryption Standard (AES) is one of the symmetric
encryption methods which is considered a new block cipher that replaces the Data Encryption Standard
(DES) [11]. This algorithm is capable of encrypting plaintext of 16 bytes or 128-bits. This algorithm
also uses a key (128-bits, 192-bits, and 256-bits) of at least 128-bits and a maximum of 256-bits. In
this encryption process, the number of rounds conducted by the process depends on the length of the
encryption keys (10 rounds for a 128-bits key, 12 rounds for a 192-bits key, 14 rounds for a 256-bits
key).

The first step of Rijndael algorithm is creating keys as many as the number of loop processes. To avoid
using the same key in every round, Rijndael proposed to create a new key based on the key schedule.
The key is represented in the form of a 4x4 byte matrix. To create a round key, the first step that needs
to be done is to take the key byte value from the last column to be shifted up once, then the key byte in
that column is substituted with the bytes taken based on the S-box. The column which is the result of
the S-box substitution is XOR-ed with the first column of the key and R-con of each round to produce
the first column of the round key. To generate The second to the fourth column of the round key, the
values in the column and the round key in the previous column have to be XOR. For example, to get
the round key of the third column, the second column of the round key is XOR-ed with the value of the
third column.

Ind. Journal on Computing Vol. 7, Issue. 1, April 2022 19

In the Rijndael algorithm, the data to be encrypted is stored in a 4x4 matrix called state. The state will
go through four main processes, and those are Sub Bytes, Shift Rows, Mix Column, and Add Round
Key. The encryption process of the Rijndael algorithm is shown in Figure 2.

• Sub Bytes : Sub Bytes is a process where each byte of the state is substituted with a new byte
that is taken based on the S-box.

• Shift Rows : Shift Rows is a process in which each byte of the second row in the state is shifted
to the left by one column, the third row is shifted to the left by two columns, and the fourth row
is shifted to the left by three columns. This matrix is known as the S matrix.

• Mix Column : Mix Column is a process where the state resulted from the shift rows process will
be converted into a new matrix of 4x4 size. In the Mix Columns step, the cross product between
the mix column matrix and the matrix resulted from the shift row process is conducted.

• Add Round key : Add Round Key is an XOR process between the round key and the results of
the previous three processes.

Fig. 2. Rijndael algorithm encryption process [12]

E. Hash Messages Authentication Code-Deterministic Random Bit Generator (HMAC-DRBG)

According to [6], DRBG is a mechanism that uses an algorithm that functions to generate a set of
bits from an initial value determined by the seed. Seed is the forerunner of a random number that must
have sufficient entropy, and the seed is the output of a randomness source (randomness source is a
randomization function). Once the seed and initial values have been determined, the DRBG is considered
to have been initiated and can be used to generate random numbers. The bits generated by DRBG are
pseudorandom bits. To design a good DRBG algorithm, seeds must be kept secret because the output of
DRBG must be unpredictable, such that the security strength of DRBG is getting higher. The functional
model of DRBG based on [6] is shown in Figure 3.

Mursalat et al.
Column-Level Database Encryption... 20

Fig. 3. DRBG Functional Model [6]

Based on Figure 3, the DRBG mechanism generally has several components, those are input entropy,
additional input, personalization string, nonce, internal state, and the function of the DRBG mechanism.

• Entropy Input
In the DRBG mechanism, the randomization source is used to generate input entropy which will
then be used for seed generation where the input and seed entropy are secret. The secrecy of the
input entropy is the basis of the security of the DRBG. The randomization source must provide
input entropy that can support the security forces required in the DRBG mechanism.

• Other Input
The DRBG mechanism has additional input, personalization strings, and nonce which do not need
to be kept secret. Additional input consist of secret or public information. However, if the additional
input contains secret private information, that information does not have to be protected at a higher
security strength [6].

• Internal State
Internal State is the memory of the DRBG that contains the required parameters and variables.

• DRBG Mechanism Function
The functions that exist in the DRBG mechanism handle the internal state of the DRBG. The DRBG
mechanism has five different functions, namely the instantiate, generate, reseed, uninstantiate, and
DRBG quality test functions. The instantiate function aims to obtain input entropy for generating
seeds. The generate function generates pseudorandom bits as needed using the current internal state
and builds a new internal state for subsequent requests. The reseed function generates a new seed
using the current internal state and internal state. The uninstantiate function aims to empty or delete
the internal state. The function of the DRBG quality check aims is to find out whether the DRBG
mechanism is working properly.

According to [6], there are two types of hash-based DRBG algorithms, those are hash-DRBG and
HMAC-DRBG. The difference between the two algorithms is in the use of hashes to randomize certain
variables. HMAC-DRBG uses a hash function for two variables, while HASH-DRBG only uses a hash
function of one variable. Thus, HMAC-DRBG has a higher randomization complexity so that its security
strength becomes higher.

In HMAC-DRBG there is an internal state which contains the values of V, K, and a reseed counter. The
internal state will be updated when a new pseudorandom bit is generated. To generate pseudorandom bits,
three processes are carried out, namely the HMAC-DRBG instantiate, generate, and reseed processes. In
addition, each process has an HMAC-DRBG update function which is used to update the internal state
of the HMAC-DRBG.

The first step that is executed is instantiate which aims to generate the first bit-string (first seed) or

Ind. Journal on Computing Vol. 7, Issue. 1, April 2022 21

initial bit-string (initial seed), and initialize the values of V, K, and reseed counter which are in the
internal state. The internal state is processed at the generate process to generate a pseudorandomrandom
bit, then the internal state is updated to create a new random bit code. This stage is repeated based on the
reseed-interval that has been determined at the beginning of generation process. Each iteration is recorded
by the reseed counter, and if the reseed counter has reached the reseed-interval, the reseed process is
carried out to produce a new seed. The new seed is used for the next generation process. At each of
these stages, the HMAC-DRBG update function is always conducted to update the V and K values. The
detail of each stage is described as follows:

• Instantiate Process
The instantiate process in HMAC-DRBG aims to generate initial internal state values such as V,
Key, and reseed counter. The process is carried out by entering the input in the form of entropy
input, nonce, and personalization string. The three input values are concatenated and used as a seed.
In addition, after the initialization of the seed, V, K, and reseed counter value then V and K values
are updated using HMAC-DRBG update function and the seed.
Based on the input value and initial value (V and K), this process begins with the creation of a
seed by concatenating the input entropy, nonce, and personalization string. Then, initializing K with
a hexadecimal value of 00 and V with a hexadecimal value of 01 as many as the pre-determined
number of output bits. In the next step, K and V are updated by using the internal update function.
The value of the reseed-counter is initialized with 1 to indicate the start of the new seed creation
process. The resulting output is V, K, and reseed counter. The algorithm of the instantiate process
is shown in algorithm 4.

Algorithm 4 HMAC_DRBG_Instantiate
Input : entropy_input, nonce, personalization_string, security_strength
Output : V, K, reseed_counter

1: seed← entropy_input||nonce||personalization_string
2: K ← 0X00...00 ▷ Outlen bits
3: V ← 0X01...01 ▷ Outlen bits
4: (K,V)← HMAC_DRBG_Update(seed,K, V).
5: Reseed_counter ← 1
6: return V, K, Reseed_counter

• HMAC-DRBG Update Function
The HMAC-DRBG update function aims to update the value of V and the K of the HMAC-DRBG
by hashing V using the K as a hash key. The inputs of this function are V, K, and provided data,
where provided data is an additional input whose value depends on the stage being conducted. In
the instantiate and reseed process, provided data contains seed, while the generated provided data
process contains additional input.
This process begins by checking whether the provided data is empty or not. If the provided data is
empty then a hash of V and the flag concatenation using the K as the hash key is conducted, where
the flag is ’0x00’. Then the first hash results are used as the hash key for the second hash process
of V. If provided data is not empty then the first hash process is carried out after the concatenation
of V, flags, and provided data. The resulting K is used as the hash key for the second hash process
of V. After conducting the first two hashes, these two hash processes are repeated with the new
flag value ’0x01’. Finally, the HMAC-DRBG update function returns the new V value and K. The
algorithm of the HMAC-DRBG update function can be seen in algorithm 5.

Mursalat et al.
Column-Level Database Encryption... 22

Algorithm 5 HMAC_DRBG_Update
Input : provided_data, K, V
Output : K, V

1: flag ←′ 0x00′

2: if isEmpty(provided_data) then
3: K ← HMAC(K, V || flag)
4: V ← HMAC(K, V)
5: else
6: K ← HMAC(K, V || flag || provided_data)
7: V ← HMAC(K, V)
8: flag ←′ 0x01′

9: K ← HMAC(K, V || flag || provided_data)
10: V ← HMAC(K, V)
11: end if
12: return K, V

• Generate Process
The generate process aims to create pseudorandom bits, where the input is V, Key, reseed counter,
requested number of bits, and additional input. The first step of this process is to check whether
reseed needs to be done or not. The reseed process is carried out if the reseed-counter value has
exceeded the reseed interval. The second step of this process is to update the internal state if the
additional input is not empty. In the third step , pseudorandom bits are generated by combining
the values of V resulting from the hash process that is carried out repeatedly. The hash function is
conducted on the value of V obtained in each iteration using the K as the hash key. This process
stops when the length of the pseudorandom bit matches the requested number of bits. last step is to
update the V and K values using HMAC-DRBG update function. Reseed counter increased by one.
The algorithm from the generate process is shown in algorithm 6.

Algorithm 6 HMAC_DRBG_Generate
Input : V, Key, reseed_counter, requested_number_of_bits, additional_input
Output : pseudorandom_bits, Key, V, reseed_counter

1: if reseed_counter > reseed_interval then
2: entropy_input← generateRandom(64bit)
3: rc← reseed_counter
4: ai← addtional_input
5: (V,Key, reseed_counter)← HMAC_DRBG_Reseed(V, Key, rc, entropy_input, ai)
6: end if
7: if isNotEmpty(additional_input) then
8: (Key, V)← HMAC_DRBG_Update(additional_input, Key, V)
9: end if

10: temp← empty()
11: while temp.length < requested_number_of_bits do
12: V ← HMAC(Key, V)
13: temp← temp || V
14: end while
15: pseudorandom_bits← leftmost(temp, requested_number_of_bits)
16: (Key, V)← HMAC_DRBG_Update(ai, Key, V)
17: reseed_counter ← rc+ 1
18: return pseudorandom_bits, Key, V, reseed_counter

Ind. Journal on Computing Vol. 7, Issue. 1, April 2022 23

• Reseed Process
This stage is carried out for generating a new seed, where the inputs are V, K, reseed counter, entropy
input, and additional input. The first, the construction of seed is carried out by concatenating the
entropy input and additional input values. Then V and the K values are updated using the HMAC-
DRBG update function based on the seed, V, and K values obtained from the input. Finally, the
reseed counter is reset to 1. The algorithm of the reseed process is shown in algorithm 7.

Algorithm 7 HMAC_DRBG_Reseed
Input : V, K, reseed_counter, entropy_input, additional_input
Output : V, K, reseed_counter

1: seed_material← entropy_input||additional_input
2: (K,V)← HMAC_DRBG_update(seed_material,K, V)
3: reseed_counter ← 1
4: return V, K, Reseed_counter

III. RESEARCH METHOD

The system built in this research consists of two sub-systems, namely the registration system and the
login system. The registration system aims to register users on the system via email, password, and full
name data and build an initial key, while the login system aims to provide access to the data contained in
the learning management system by authenticating users. In the login system, a new key is also generated
after a communication session is ended.

A. Registration Mechanism

During the registration process, users is asked to write their email, password, and full name on the
registration page. In this case, an email can only be used for one user, then the system will check to
make sure that the email used to register has not been used by another user. If the email is already used
by another user then the registration process is canceled by the system. Meanwhile, if the email has
never been used by another user, the registration process is continued by generating a key that is used
to encrypt the password. The password encryption process is carried out using the Rijndael algorithm,
while the key generation is carried out using the Hash Message Authentication Code - Deterministic
Random Bit Generator (HMAC-DRBG) method. Finally, the email, the full name, the key for encrypting
the password, and the encrypted password is stored in the learning management system database. The
overall scheme of the registration process is shown in Figure 4.

The key generation used to encrypt the password is done using HMAC-DRBG instantiate and generate
process. The process carried out is as follows:

• Generating Random Numbers using random module
• Calculating the entropy of a random number that has been generated. If the entropy is less than the

determined security strength, then the random number cannot be used as a seed. If the entropy of
the random number meets the requirements, then this random number can be used as a seed.

• Generating the seed can be done in two ways: by adding or without adding additional inputs.
• Initiating the value K = 0x00, V= 0x01, reseed counter = 0. Changing to a new value as a result of

the update function (HMAC_DRBG_update(seed, K, V)) and changes the reseed-counter to 1.
• Generating the key using the function HMAC_DRBG_generate(K, V, reseed counter, seed, requested

number of bits = 32, additional input). Furthermore, converting V and K to a new value as a result
of the update function (HMAC_DRBG_update(seed, K, V)), and the reseed counter is increased by
1.

After the key is created, the password padding process is carried out by adding (128 - the length of
the password in bit) bits of 0. The password encryption process is carried out using the Rijndael (AES)

Mursalat et al.
Column-Level Database Encryption... 24

Fig. 4. User Registration Scheme

algorithm as described in section 2.3. The encrypted password along with the email and full name is
stored in the database. The complete registration algorithm is shown in algorithm 8.

Algorithm 8 Registration
Input : email, password, name

1: user[][] ▷ database user[email, password, name, encryption key]
2: found← false
3: i← 0
4: while i ≤ user.length do
5: if user[i][0] = email then
6: found← true
7: end if
8: i = i+ 1
9: end while

10: if found = false then
11: seed, K, V, reseed_counter ← HMAC_DRBG_instantiate(entropy_input)
12: key, K, V, seed, reseed_counter ←
13: HMAC_DRBG_generate(K, V, reseed_counter, seed, 32, additional_input)
14: encryptedPass← AES(password, key)
15: end if

B. Login Mechanism

During the login process, the user will be asked to enter his email and password on the login page.
The system will check the existence of the user’s email in the learning management system database.
If the email is already stored in the database, it is necessary to check the validity of the password by
comparing the results of the encrypted password written on the login page with the encrypted password
stored in the database. If both are similar, then the user is allowed to access the data in the learning
management system. If the email is not stored in the database, the user have to register first.

After accessing the data in the database, the system generates a new key using the HMAC_DRBG_generate

Ind. Journal on Computing Vol. 7, Issue. 1, April 2022 25

function from the previous internal state. Finally, the password is encrypted using the new key and stored
along with the name and email into the database, while the previous key and data will be deleted. The
login scheme is shown in the image 5

Fig. 5. User login Scheme

IV. RESULTS AND DISCUSSION

Evaluation of the proposed method is divided into two sub-sections, those are evaluation of performance
and evaluation of security.

A. Performance Analysis

This section, discusses the time complexity required by the learning management system to encrypt
passwords using the Rijndael algorithm and to generate keys that will be used in the encryption process.
The time complexity required for this system is determined by the time complexity required for the
password encryption process using the Rijndael algorithm and the time complexity required to generate
the key using HMAC-DRBG. The time complexity required by DRBG depends on the time complexity
required for SHA256, which is O(n). While the time complexity of password encryption using the Rijndael
algorithm is O(n). Thus, the time complexity required by the learning management system to generate
the key used in the password encryption process and to encrypt the password is O(n).

B. Security Analysis

In this section, discusses the resilience of the system against key guessing attacks. If the length of a
key is m-bits, then there are 2m possible keys that can be generated without any additional function. If
an attacker attempts to attack this method by brute force key guessing for n times, then the probability
of the attacker for getting the key can be calculated using equation (1).

P =
n

2m
(1)

Since this system uses a hash function,and the hash function has a collision, then there is a possibility of
two different input values result in the same hash value. Thus, the probability of successful key guessing

Mursalat et al.
Column-Level Database Encryption... 26

will depend on the hash function used. The hash function used is SHA256 which has a maximum limit
of 64-bits input length, such that the probability of successful key guessing will depend on the number
of experiments conducted and the maximum input length.

Collision attack is carried out for calculating a function h using x′ in such a way that it can satisfy
h(x) = h(x′), where x′is the guessed input. The attack method is done by to taking a random value of
x′ as much as q and then calculating h(x′) . If the attacker tries to retrieve n random numbers of x′

i

where x′
i ∈ X , X = { x′

i | i = 1, 2, . . . , n }, and the length of x′ is y-bits. Then each value of x′ will
be used to calculate the function h. If h(x) = h(x′

i) and x ̸= x′
i , then x′

i is a collision of x. The stages
of the attack are shown in algorithm 9.

Algorithm 9 BruteforceCollision
1: result← null
2: stop← false
3: a1 ← 0
4: while a1 < 2 do
5: a2 ← 0
6: while a2 < 2 do
7: a3 ← 0
8: · · ·
9: while an−1 < 2 do

10: an ← 0
11: while an < 2 do
12: att← a1, a2, · · · , an
13: hashAtt← sha256(att)
14: if key = hashAtt then
15: stop← true
16: result← hashAtt
17: end if
18: an ← an + 1
19: end while
20: an−1 ← an−1 + 1
21: end while
22: · · ·
23: a2 ← a2 + 1
24: end while
25: a1 ← a1 + 1
26: end while
27: return result

By assuming that n is the number of experiments conducted by the attacker, and the input length of
the hash function is |x′|, then the probability of succeed of the key guessing attack can be calculated
using equation (2).

Pprev =
n

|x′| (2)

The proposed system uses the HMAC-DRBG method to build a dynamic key while the key depends on
the seed used in HMAC-DRBG. Since the seed in the HMAC-DRBG changes periodically, the resilience
of the system depends on the seed and the period of seed changes (reseed). If the seed changes period
is q, the length of the seed x is m-bit, and there are n trials, then the probability to succeed guessing a
seed (Pprop) that produces the original key can be calculated according to equation (3). The probability
of guessing the seed is the same as the probability of guessing the key because the key generated by
HMAC-DRBG is determined by the seed.

Ind. Journal on Computing Vol. 7, Issue. 1, April 2022 27

Pprop =
n mod q

|x′| ×
(

q

|x′|

)⌊n
q ⌋

(3)

Based on equation (3), it is shown that the probability of success for guessing a key when using the
proposed method is less than the probability of success for guessing a key when using the previous
method proposed by Francis Onodueze et al. [1] (see equation (2)). Finally, it can be concluded that the
use of HMAC-DRBG to generate keys in the Rijndael algorithm increases the security strength against
key guessing attacks. The probability of success key guessing attack using the proposed method is also
less than Liu’s method, because the probability of success key guessing attack is greater than 1/1024.

Based on the attack method that has been previously described (brute force and collision attacks), the
time complexity required for the attack will be calculated. The time complexity calculation is carried
out using an attack algorithm which is shown further in Algorithm 9. Based on Algorithm 9, the time
complexity required to attack the previous method proposed by Francis Onodueze et al. [1] is O(kn),
where n is the length of the input (m-bits) of the hash function and k is the number of possible character
types used to represent the input. Meanwhile, the time complexity required to attack the proposed method
is O(km.n) where m is the number of generated seeds. Finally, it can be concluded that the time complexity
required to perform a successful key guessing attack when using the proposed method is greater than
the time complexity required to perform a key guess attack when using the previous method that was
proposed by Francis Onodueze et al. [1].

V. CONCLUSION

Learning management system serves to facilitate teaching and learning activities. User data stored
in the learning management system database includes data that requires protection against access from
unauthorized parties, such as cybercrime. To overcome this problem, an encryption process is used for
data that is considered important. A password is used for securing and managing the access to the learning
management system. Since the password is a sensitive user identity, the password needs to be encrypted.
In the previous method proposed by Francis Onodueze et al. [1], Rijndael encryption was used. The key
used to encrypt passwords using the Rijndael method is a static key such that the key guessing attacks
can be easily carried out using brute force method. To increase the security against the key guessing
attacks, a dynamic key generation method is proposed using HMAC-DRBG. Based on the results of the
evaluation of the performance and safety of the previously proposed and currently proposed methods,
it can be concluded that the time complexity for running the two methods is the same. Which is O(n).
The time complexity to conduct a success key guessing attack when using the previous method is O(kn),
while the time complexity to conduct a success key guessing attack when using the proposed method
is O(kmn). The probability of success key guessing attack when using the previous method proposed
by Francis Onodueze et al. [1] is greater than the probability of the success key guessing attack on the
proposed method.

REFERENCES

[1] Francis Onodueze and Sharad Sharma. Rijndael algorithm for database encryption on a course management system.
International Journal of Computers and their Applications, IJCA, 24, 03 2017.

[2] Luca Baldanzi, Luca Crocetti, Francesco Falaschi, Matteo Bertolucci, Jacopo Belli, and Luca Fanucci. Cryptographically
secure pseudo-random number generator ip-core based on sha2 algorithm. Sensors, 20:1869, 03 2020.

[3] Miguel Herrero-Collantes and Juan Carlos Garcia-Escartin. Quantum random number generators. Reviews of Modern Physics,
89, 04 2016.

[4] Zhi Liu and De Han. Dynamic encryption algorithm based on rijndael. Advanced Materials Research, 490-495:339–342, 03
2012.

[5] Katherine Ye, Matthew Green, Naphat Sanguansin, Lennart Beringer, Adam Petcher, and Andrew Appel. Verified correctness
and security of mbedtls hmac-drbg. 08 2017.

[6] Elaine Barker and John Kelsey. Recommendation for random number generation using deterministic random bit generators
(revised). National Institute of Standards and Technology, 01 2007.

Mursalat et al.
Column-Level Database Encryption... 28

[7] Mrs Yasmeen. Nosql database engines for big data management. International Journal of Trend in Scientific Research and
Development, Volume-2:617–622, 10 2018.

[8] Than Myo Zaw, Min Thant, and S. V. Bezzateev. Database security with aes encryption, elliptic curve encryption and
signature. In 2019 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF), pages
1–6, 2019.

[9] AL-Saraireh J. An efficient approach for query processing over encrypted database. Journal of Computer Science, 13:548–557,
10 2017.

[10] Simanta Sarmah. Database security –threats prevention. International Journal of Computer Trends and Technology, 67:46–53,
05 2019.

[11] Neeraj Sharma and Mohammed Farik. A performance test on symmetric encryption algorithms-rc2 vs rijndael. International
Journal of Scientific Technology Research, 6:292–294, 07 2017.

[12] Asmaa Ashoor. Enhancing performance of aes algorithm using concurrency and multithreading. 06 2019.

Ind. Journal on Computing Vol. 7, Issue. 1, April 2022 29

	 30

