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Abstract 

In this paper, a novel and efficient dynamic array, called hybrid array list (HAL), has been presented. 

A HAL H has the structure of a linked list, but each node is an array of size at most 2c, where c is 

an initial array size provided by the user. As elements are added or deleted in H, it grows or shrinks 

by the number of nodes as well as by the size of the arrays in the nodes. We consider the operations 

append, insert and delete as well as a helping operation actual position in H. These operations in 

worst case run in O(1), O(m+c), O(m+c) and O(m) times, respectively, where m is the number of 

nodes in H. Worst-case running time of similar operations in standard linked list or array are O(n), 

where n is the total number of elements. As both m and c are no more than n, theoretically HAL is 

faster than array and linked list. Experimentally, HAL has been implemented and compared with 

similar operations in array list of Java and vector of C++. Our results show that HAL can perform 

substantially better when c is about half of the total number of elements. 
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Abstrak 

Kertas kerja ini akan membentangkan suatu tatasusunan yang baru dan dinamik, dinamakan hybrid 

array list (HAL). HAL H mempunyai struktur suatu senarai berantai, tetapi setiap nod, paling besar, 

ialah suatu tatasusunan bersaiz 2c, yang mana c  ialah saiz tatasusunan awal yang ditetapkan oleh 

pengguna. Apabila elemen ditambah atau dihapuskan dalam H, ia akan membesar atau menguncup 

mengikut bilangan nod dan juga mengikut saiz tatasusunan dalam nod tersebut. Kami 

mengambilkira operasi append, insert dan delete serta suatu operasi pembantu actual position dalam 

H. Pada jangkaan terburuk, operasi ini berlari O(1), O(m+c) dan O(m) kali masing-masing, yang 

mana m adalah bilangan nod dalam H. Kes terburuk masa berlari operasi serupa dalam senarai 

berantai standad atau tatasusunan adalah O(n), yang mana n ialah jumlah bilangan elemen. Oleh 

kerana kedua-dua m dan c adalah tidak lebih dari n, maka secara teori HAL  adalah lebih laju dari 

tatasusunan dan senarai berantai. Sebagai eksperimen, kami telah melaksanakan HAL dan 

membandingkan operasi tersebut dengan operasi serupa dalam senarai tatasusunan JAVA dan vector 

C++. Keputusan kami adalah HAL menunjukkan prestasi jauh lebih baik apabila c lebih kurang 

separuh dari jumlah bilangan elemen-elemen. 

Katakunci: Tatasusunan dinamik, senarai berantai, struktur data, senarai tatasusunan hibrid 
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I. INTRODUCTION 

rray and linked list are two most basic and primitive data structures used in computer programming. Both 

of them contain a set of similar items. An array has fixed size and is defined by the user at the beginning 

of a program. The memory allocated for an array is contiguous in the physical memory of a computer. The 

elements are stored in sequence in the memory. Once defined, the size of an array cannot be changed. The most 

important advantage of an array is that its elements can be accessed randomly by their indices in constant time 

per element. See Fig. 1. 

On the other hand, a linked list stores element in nodes---one node for each element. A node contains an 

element as well as a link to the next node (and another link to the previous node if the linked list is a doubly 

linked list). The memory for each node is allocated dynamically during the run time of a program. Therefore, 

the memory allocated by a linked list is not contiguous. This is an advantage in the sense that for a large number 

of elements a large size of contiguous memory is not required (unlike an array). Another advantage of a linked 

list is that the number of elements is not fixed. As long as there is enough memory, the elements can be added 

in a linked list. However, accessing elements in a linked list is slower than that in an array. In a linked list, an 

element must be accessed sequentially after moving from the start node to the destination node. In worst case, 

this time is linear to the number of elements in a linked list. See Fig. 1 for more detail. 

Array and linked list also greatly differ in insertion and deletion of elements. In an array, insertion and 

deletion at specific position is expensive, as elements are to be shifted towards left or right respectively. This 

can take time linear to the number of elements in the array. In contrast, insertion and deletion are easier and 

faster in a linked list. A node can be inserted at any position in contestant time by manipulating some fixed 

number of links of the nodes involved. This is constant per insertion or deletion.  

There are some other comparisons between array and linked list. Standard textbooks on algorithms and data 

structures contain chapters on array and linked list with discussion on their relative advantages and 

disadvantages. Such as, the textbooks [1-5] can be seen for this purpose. 

A. Dynamic arrays  

For a long time, researchers are trying to find some data structures that can capture the advantages of both 

array and linked list. In particular, the effort was made to find a data structure that can access the elements in a 

 

Fig.  1. (a) An array. (b) A linked list. (c) A hybrid array list (HAL). 
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faster way like an array, and at the same time can maintain variable number of elements like a linked list. The 

most successful innovation so far is the concept of dynamic array [1, 6-16, 18]. 

The basic principle of a dynamic array is to create an array of fixed size at the beginning. Then the elements 

are appended, inserted or deleted as like an array. Because of appends and insertions, at any time if the dynamic 

array becomes full, a new array is created with an increased size. The elements from the old array is copied to 

the new array along with the newly appended or inserted element. Then the old array is freed. The factor by 

which the size of the array is increased can vary. However, the usual value of this factor is 1.125 [14], 1.5 [11, 

13, 15, 16] or 2 [1, 6, 12].  

Similarly, if the dynamic array size becomes too small because of deletions, a new array is created with 

smaller size and the elements from the old array, excluding the deleted element, are copied to the new array. 

Then the old array is freed. Again, the factor by which the array size is reduced can vary like 0.5 [1] or 0.25 [1]. 

B. Variations of dynamic array  

It may be difficult to find a non-trivial computer program that does not use an array. However, the use of 

dynamic array is also becoming more common as the programmers want to get the advantages of variable size 

of a dynamic array. This can be noticed from the practical point of view. Popular and widely used programming 

languages such as Java, C++ and Python implement dynamic arrays in their standard library functions. Dynamic 

array is implemented as array list in Java [11, 17], vector in C++ [12, 15] and list in Python [6, 14]. Their 

implementations are different based on the factor by which the size of the array is increased, which is 1.5 for 

Java arraylist [11] and C++ vector [15], and 1.125 for Python list [14]. Various popular software and platforms 

also use or support dynamic array in their codes, such as Android (because its applications are developed in 

Java), Facebook [16] and Emacs [18, 19]. 

Also, theoretically, there are several variations of dynamic arrays. The most basic version of a dynamic array 

can be found in the textbooks on algorithms and data structures, such as in Cormen et al. [1]. In Cormen et al. 

[1], the dynamic array is explained as an abstract data type (ADT), called dynamic table. The actual structure 

of a dynamic table can be an array, or an array-implemented stack, heap, queue or hash table.  The table size is 

initially one. The elements are inserted and deleted into the table. When the table is full (due to the insertions), 

its size is doubled by allocating a new table, copying the elements from the old table to the new table, and finally 

freeing up the old table. Similarly, when the empty slots in the table (due to the deletions) are much high, its 

size is made half by allocating a new table, copying the elements from the old table to the new table, and finally 

freeing up the old table. The authors in [1] showed that the cost of an insertion or a deletion in a dynamic table 

take constant amortized time on average. (Please recall that an amortized time is the average time required to 

perform a sequence of operations over all the operations performed [Page 451 of 1, Page 34 of 5].) 

Gap buffer [18] is a variation of dynamic array that works well when the insertion and deletion operations 

are performed close to each other in the array position. For example, in text editors, users usually perform 

insertion and deletion close to their current typing places. Therefore, gap buffers are useful in text editors [18, 

19], such as in Emacs [18,19]. 

A hashed array tree (HAT) [9] is a dynamic array that maintains an array of pointers each pointing to a fixed 

size array. Altogether these arrays are like leaves of same length and the array of pointers are their parents. As 

the elements are stored in separated arrays of smaller size instead of one big array, HAT can reduce the amount 

of shifting for insertion and deletion as well as the amount of copying due to automatic resizing of the array 

when it is full. 

Tiered vector is another variation of dynamic array presented by Goodrich et al. [8]. By their data structure, 

insertion and deletion can be performed in O(n1/2) time, which is much less than O(n) required by an array.  
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Brodnik et al. [7] described a variation of dynamic array, which they call resizable array, where the insertion 

and deletion operations can be performed in amortized as well as worst-case constant time. 

C. Results in this paper 

In this paper, yet another variation of dynamic array which is called hybrid array list (HAL) is presented. The 

structure of a HAL H is a linked list. Each node, also called a chunk, in H is an array of size at most 2c, where 

c is an initial array size determined by the user. As the elements are added and deleted in H, it grows or shrinks 

both by the number of nodes in H as well as the sizes of the arrays in the nodes of H. See Fig. 1 for an illustration. 

Four operations are considered in H, which are actual position, append, insert and delete. At any time, all 

chunks of H are full of elements (i.e., no empty space in their array), except the last chunk, for which there may 

be empty spaces at the end of the array. Therefore, H can be considered as a single array with all empty spaces 

at its end. An append operation adds an element to H at its end, which is the last available position in the last 

chunk. A new chunk may be created based on whether the current size of the last chunk is c. Insert and delete 

use an index that is counted from the beginning of H. An actual position operation finds the chunk that contains 

that index. An insert operation inserts an element in the relative position of the index in that chunk if the chunk 

is the last one in H. Otherwise, a new chunk is created with one size bigger and all elements as well as the new 

element in relative position are copied to the new chunk. The old chink is deleted. A delete operation works in 

a similar way.  

The running time of these operations are O(m) for actual position, O(m+c) for insert and delete, and O(1) for 

append, where m is the number of chunks in H. The value of m greatly depends upon the value of c. However, 

in general, both m and c are much smaller than n and never more than n, where n is the total number of elements 

in H. As in both array and linked list, similar operations run in worst case in O(n) time, HAL is theoretically 

faster than linked list and array. (Please note that writing ‘O’ notation with more than one parameter, as we 

have written here with m and c, is not uncommon and is used for better accuracy in complexity analysis. For 

example, see [Sections 15.4 and 23.2 of 1] for similarly written running times for some well-known algorithms.) 

Experimentally, HAL is implemented with the abovementioned operations and compared with similar 

operations in array list of Java and vector of C++. The experimental results show that H can perform 

substantially faster in practice when c is about half of n.  

The value of c plays an important role in the efficiency of HAL. When c is high and close to n, the value of 

m is much small. In that case, a HAL works more like an array. On the other hand, when c is small compared 

to n, the value of m is much high. In that case, a HAL works more like a linked list. When the value of c is about 

half of n, a HAL uses the benefit of both an array and a linked list, and therefore, works more efficiently.  This 

is evident from our experimental results too, which show that HAL performs much faster when c is about the 

half of n (also see Section III). 

II. HYBRID ARRAY LIST 

We denote a chunk by C. We also use C specifically to denote the current chunk that we are working on. We 

denote by |C| the number of elements in C. We use p as the index of the last element in the last chunk. These 

are the notations along with c (initial chunk size), m (number of chunks in H) and n (total number of elements 

in H) that we shall use most frequently in the rest of the paper.  
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A. HAL operations  

a. Initialization 

In the initialization phase, a new HAL H is created. It creates, by a CreateNode function, only one empty 

chunk C of size c. The current chunk is C. See Algorithm 1 for the pseudo code of the initialization phase in 

more detail.   

All the steps for initializations, including the CreateNode function, run in constant time. Therefore, the 

following theorem is evident. 

Theorem 1: An initialization of H takes O(1) time. 

 

 

 

 

 

 

 

 

Algorithm 1: Pseudo code for Initialization and CreateNode(). 

b. Actual position 

An actual position operation, denoted as ActualPosition(i), works as follows. The index i is from the 

beginning of H. Let C be the chunk that contains this index i. Let j be the index of C where i maps to. Note that 

j<=i. If C is the only chunk in H, then i and j have the same value. If H has more than one chunk, then j is i 

minus the total number of elements in the chunks before C. ActualPosition(i) returns j. Please see Algorithm 2 

for the pseudo code of ActualPosition(i). 

ActualPosition(index) 

Define previous ← NULL 

Define counter ← current.ARR.length; 

while (index >= counter and current.next != null)  

previous ← current 

current ← current.next 

counter ← counter + current.arr.length 

Return actualPosition ← Position – (counter - current.ARR.length) 

 
Algorithm 2: Pseudo code for ActualPosition(i). 

 

The following theorem gives the running time of ActualPosition(i). 

Theorem 2: ActualPosition(i) in H runs in O(m) time. 

Proof: In worst case, i may map to the last chunk of H. Therefore, we need to traverse all m chunks of H by 

following the next links. This takes O(m) time. 

 

InitializeHAL(chunkSize): 

Define a global counter totalNumberofElements ← 0 

Define a global integer atPosition ← 0 

Define a global variable startNode ← CreateNode(chunkSize) 

Define a global variable tail ← startNode 

Define a global variable current = start; 

Define a global variable previous = null; 

 

CreateNode (chunkSize): 

Create a newNode that contains an array ARR[chunkSize]  

nextNode ← NULL 
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c. Append 

An append operation, denoted as Append(x), adds an element x in the first available position, which is p+1, 

in the last chunk. If the last chunk has c elements, then a new chunk C of size c is created at the end of H and x 

is inserted at the first position of C. Please see Fig. 2 and see Algorithm 3 for the pseudo code of Append(x). 

Note that append operations always keep the size of a chunk within c. 

 

Fig.  2. Appending an element in H. (a) Last chunk has less than c elements. (b) Last chunk has c elements. 

 

The following theorem gives the running time of Append(x). 

Theorem 3: Append(x) in H can be done in O(1) time. 

Proof: All the steps in Append(x) run in O(1) time. Therefore, the total number of time is O(1). 

 

Append(newDataElement): 

if (atPosition >= chunkSize) 

            atPosition ← 0 

            tail.next ← CreateNode(chunkSize); 

            tail ← tail.next         

tail.ARR[atPosition] ← newDataElement; 

atPosition ← atPosition + 1 

totalNumberofElements ← totalNumberofElements + 1 

 
Algorithm 3: Pseudo code for Append(x). 

 

d. Insert 

An insert operation, denoted as Insert(x, i), inserts an element x in position i in H. If i is more than the number 

of elements in H, then x is simply appended at the end of H by Append(x). This will ensure that the newly 

inserted element is contiguous with the exiting elements. If i is no more than the number of elements in H, then 

Insert(x, i) works in two steps. First it finds, by using ActualPosition(i), the chunk that contains the index i as 

well as the actual position of i in that chunk. Let that chunk be C and let j be the actual position of i in C.  

In the next step, it inserts x in C at j. The insertion is easy if C is the last chunk. If C is the last chunk and 

there is an empty space in C, then x is inserted at j by shifting all elements after j by one position to the right. If 

C has no empty space, then a new chunk C' of size c is created at the end of H. The last element of C is copied 
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to the first position of C', and thus making the last space empty in C. The remaining elements after j in C are 

shifted by one position to the right and x is inserted at j. Finally, C' is made the tail node. Note that an insertion 

in the last chunk keeps its size c. 

If C is not the last chunk, then there are two cases based on the value of |C|: (1) |C| < 2c and (2) |C| = 2c. In 

Case (1), a new chunk C' is created with size |C|+1. All elements of C from position 0 to j-1 are copied to C' in 

positions 0 to j-1, then x is inserted at position j in C', and then all elements of C from position j to |C|-1 are 

copied to C' in positions j+1 to |C|. Finally, C is replaced by C' in H with necessary link updates and C is deleted. 

 

Fig.  3. Inserting an element x into H. The chunk in which x is to be inserted has (a) less than 2c elements and (b) 2c elements. 

 

In Case (2), there can be further two cases: (2a) j < c and (2b) j >= c. In both cases, two new chunks C' and 

C" are created of size c each. In Case (2a), all elements of C from position 0 to j-1 are copied to C' in positions 

0 to j-1, then x is inserted at position j in C', and then all elements of C from position j to c-2 are copied to C' in 

positions j+1 to c-1. All elements of C from position c-1 to 2c-2 are copied to C" in positions 0 to c. In Case 

(2b), all elements of C from position 0 to c-1 are copied to C' in positions 0 to c-1. All elements of C from 

position c to j-1 are copied to C" in positions 0 to j-1, then x is inserted into C" in position j, and all elements 

of C from position j to 2c-2 are copied to C" in positions j+1 to 2c-1. Finally, C is replaced by C' and C" in 

sequence in H with necessary link updates and C is deleted. Please see Fig. 3 and please see Algorithm 4 for 

the pseudo code of Insert(x, i). Note that, insert operations allow the size of a chunk to grow beyond c, but it 

keeps the size within 2c. 

The following theorem gives the running time of Insert(x, i). 

Theorem 4: Insert(x, i) in H can be done in O(m+c) time, where m is the number of chunks in H and c is the 

chunk size. 

Proof: By Theorem 2, finding C and j takes O(m) time. If C is the last chunk, then for inserting x in C, in 

worst case all elements of C may need to be shifted right by one position when the value of j may be one. Since 

C can have at most c elements, it takes O(c) time. Moreover, a new chunk may need to be created when C is 

full, which would take O(1) time. Therefore, the total time for inserting in the last chunk is O(c) + O(1) = O(c). 
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If C is not the last chunk, then copying one by one all elements of C along with x to C' and possibly to C" takes 

O(|C|+1). Since C is split when |C| is 2c, we have |C| <= 2c. Therefore, time for copying is O(2c+1) = O(c). 

Finally, deleting C from H and inserting C' and C" in H require constant amount of pointer updates. Therefore, 

total time for Insert(x, i) is O(m)+O(c) = O(m+c). (Please remember that writing this running time as O(m+c) 

gives a better accuracy than writing it as O(max{m, c}).) 

 

Insert(newDataElement, Position): 

if (Position >= totalNumberofElements) 

            Append(newDataElement)  

            exit 

Define actualPosition ← ActualPosition(Position) 

if (current = tail)  

if (atPosition <= tail.ARR.length - 1)  

Shift all elements starting from actualPosition to the right. 

tail.ARR [actualPosition] ← newDataElement; 

if(atPosition = tail.ARR.length - 1){ 

temp1 ← CreateNode(chunkSize) 

tail.next ← temp1 

tail ← temp1 

atPosition ← tail.ARR[0] 

 else 

atPosition ← atPosition + 1 

 

else                  

               temp1 ← CreateNode(chunkSize) 

                              tail.next ← temp1 

                              temp1.ARR [0] ← tail. ARR[tail.ARR.length - 1]; 

                              Shift all elements starting from actualPosition to the right, to insert the new element at   

                              the actualPosition. 

                              tail. ARR [actualPosition] ← newDataElement; 

                              tail ← temp1 

                              atPosition ← temp1.ARR[1] 

else 

if (current.ARR.length = (chunkSize * 2) - 1) 

 temp1 ← CreateNode(chunkSize) 

 temp2 ← CreateNode(chunkSize) 

Copy elements from the current chunk to the new chunks while adding a new element to 

the appropriate chunk using actualPosition  

temp2.next ← current.next 

temp1.next ← temp2 

previous.next ← temp1 

else 

temp ← CreateNode(chunkSize + 1) 

Copy elements from the current chunk to the new chunk while adding a new element at 

actualPosition  

temp.next ← current.next 

previous.next ← temp  

                            

totalNumberofElements ← totalNumberofElements + 1 

 
Algorithm 4: Pseudo code for Insert(x, i). 
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e. Delete 

A delete operation, denoted as Delete(i), deletes the element that is in position i in H. Similar to an insertion, 

Delete(i) works in two steps. First it finds, by using ActualPosition(i), the chunk that contains the index i as 

well as finds the actual position of i in that chunk. Let that chunk be C and let j be the actual position of i in C. 

If C is the last chunk and there are other elements than x, then x is deleted by shifting all elements from position 

j to the last element by one position to the left. If x is the only element in C, then C is deleted.  

If C is not the last chunk, then there are two cases: (1) |C| = 1 and (2) |C| > 1. In Case (1), C will be deleted 

with necessary pointer updates in H. In Case (2), a new chunk C' is created with size |C|-1. All elements of C 

from position 0 to j-1 are copied to C' in position 0 to j-1, and then all elements of C from position j+1 to |C|-1 

are copied to C' in position j to |C|-2. Finally, C is replaced by C' in H with necessary link updates and C is 

deleted. Please see Fig. 4 and please see Algorithm 5 for the pseudo code of Delete(x). 

Theorem 5: Delete(x) in H can be done in O(m+c) time, where m is the number of chunks in H and c is the 

chunk size. 

Proof: The analysis is similar to that for an insertion. By Theorem 2, finding C and j takes O(m) time. If C is 

the last chunk, then for deleting x from C, in worst case all elements of C may need to be shifted left by one 

position when the value of j is one. As C can have at most c elements, it takes O(c) time. If C needs to be 

deleted, then that can be done by updating some pointers in O(1) time. Therefore, the total time for deleting 

from the last chunk is O(c) + O(1) = O(c).  

If C is not the last chunk, then copying one by one all elements of C along without x to C' takes O(|C|). Since, 

C can have at most 2c elements, time for copying these elements is O(2c) = O(c). Finally, deleting C from H 

and inserting C' in H require constant amount of pointer updates. Therefore, total time for Delete(x) is 

O(m)+O(c) = O(m+c). 

 

 Fig.  4. Deleting an element x from H. The chunk from which x is to be deleted has (a) 1 element and (b) more than 1 element. 
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DeleteElement (Position) 

Define actualPosition ←ActualPosition(Position) 

if (current = tail) { 

if (tail.ARR.length = 1) 

temp ← CreateNode(chunkSize) 

if(startNode == tail) 

startNode ← temp 

tail ← temp 

atPosition ← tail.ARR[0] 

 

      

else  

Shift all elements starting from actualPosition + 1 to the left. 

atPosition = atPosition - 1; 

 

 else 

 if (current.ARR.length = 1)  

 if (current = startNode) 

  startNode ← NULL 

  tail ← NULL 

else 

previous.next ←  current.next 

else 

temp ← CreateNode (current.ARR.length - 1) 

temp.next ← current.next 

 Copy elements from the current chunk to the new chunk without the element at 

actualPosition 

previous.next ← temp 

 

totalNumberofElements ← totalNumberofElements  - 1 

 
Algorithm 5: Pseudo code for Delete(x). 

 

III. EXPERIMENTAL RESULTS 

HAL has been implemented in Java with the operations append, insert, and delete for H. Experiments have 

been done with these operations in different input settings and these operations have been compared with similar 

library functions in Java and C++. 

A. Only append 

In the first input setting, the experiment performs the function Append(x) only. Initially, H is empty. The 

elements are added in H by Append(x). The chunk size is varied from 1 to 108. The number of elements 

appended are 105 and 107. For chunk size 10, the experiment has been done in more refined form by varying 

the number of append from 103 to 108. Same elements have been inserted into an arraylist of Java by its 

append(data) function as well as into a vector of C++ by its push_back(data) function. Then comparisons have 

been made between the total running times taken by these appends required by HAL, Java array list and C++ 

vector. The result is shown in Table 1. 

From this table it can be seen that in all cases, HAL substantially outperforms both Java arraylist and C++ 

vector. When the chunk size or the number of append become very high like 107, HAL gives an out of memory 

error. Java arraylist gives the similar error for these cases as well as other cases with lower chunk size and lower 

number of appends. 
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TABLE 1  

EXPERIMENTAL RESULTS FOR THE FIRST INPUT SETTING WITH ONLY APPEND OPERATIONS. 

Original 

Size 

(Chunk 

size) 

Number of 

Additions 

Time (ms) Speed up Over  

ArrayList (java) 

 

Vector 

(C++) 
HAL 

ArrayList 

(java) 

(%) 

Vector 

(C++) 

(%) 

10 

103 1 1 1 0.00% 0.00% 

104 2 10 1 50.00% 90.00% 

105 7 100 3 57.14% 97.00% 

106 159 993 12 92.45% 98.79% 

107 3145 9373 424 86.52% 95.48% 

108 OutOfMemoryError 91286 OutOfMemoryError   

 

100 

105 

7 118 1 85.71% 99.15% 

101 6 107 3 50.00% 97.20% 

102 5 101 3 40.00% 97.03% 

103 6 102 2 66.67% 98.04% 

104 6 110 3 50.00% 97.27% 

105 5 101 2 60.00% 98.02% 

106 9 103 9 0.00% 91.26% 

107 19 102 13 31.58% 87.25% 

108 OutOfMemoryError 108 OutOfMemoryError   

 

100 

107 

2320 9276 469 79.78% 94.94% 

101 1913 9262 101 94.72% 98.91% 

102 1693 9071 103 93.92% 98.86% 

103 1716 9245 98 94.29% 98.94% 

104 OutOfMemoryError 9084 107  98.82% 

105 OutOfMemoryError 9279 105  98.87% 

106 OutOfMemoryError 9132 109  98.81% 

107 OutOfMemoryError 9326 95  98.98% 

108 OutOfMemoryError 9043 OutOfMemoryError   

 

B. Only insert 

In the next input setting, experiments have been done for the function Insert(x, i) only. Before applying the 

insert operations, H contains 105 elements, which were added by append functions. Then elements are inserted 

into H. Insertions are made in random positions (i.e., with random values of i). The chunk size is varied from 1 

to 105. The number of elements inserted are from 1 to 105. Same experiments have been done with Java arraylist 

by its insertElement(data, index) function as well as with C++ vector by its insert(index, data) function. Then 

comparisons have been made for the total running time taken by these insertions in HAL, Java arraylist and 

C++ vector. The result is shown in Table 2. From this table it can be seen that when the chunk size is 102, 103 

and 104, HAL substantially outperforms both Java arraylist and C++ vector. 

C. Only delete 

In the next input setting, experiments have been done for the function Delete(x, i) only. It has been done in a 

way similar to insert. Before applying the delete operations, H contains 105 elements, which were added by 

append functions. Then elements are deleted from H. Deletions are done in random positions (i.e., with random 

values of i). The chunk size is varied from 1 to 105. The number of elements deleted are from 1 to 105.  
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TABLE 2  

EXPERIMENTAL RESULTS FOR THE SECOND INPUT SETTING WITH ONLY INSERT OPERATIONS. 

Original 

Size 

(Chunk 

size) 

Number of 

Elements 

already 

available in 

HAL by 

append 

Number of 

Insertion 

(Randomly) 

Time (ms) Speed up Over 

ArrayList 

(java) 

Vector 

(C++) 
HAL 

ArrayList 

(java) 

(%) 

Vector 

(C++) 

(%) 

100 105 

100 0 0 0   

101 0 0 16   

102 17 3 31 -82.35% -933.33% 

103 31 30 852 -2648.39% -2740.00% 

104 267 301 1955 -632.21% -549.50% 

105 2852 4207 63976 -2143.20% -1420.70% 

 

10 105 

100 0 0 0   

101 0 0 0   

102 0 3 0  100.00% 

103 38 27 31 18.42% -14.81% 

104 318 308 416 -30.82% -35.06% 

105 3895 4498 10114 -159.67% -124.86% 

  

102 105 

100 0 0 0   

101 0 1 0  100.00% 

102 3 3 2 33.33% 33.33% 

103 37 28 7 81.08% 75.00% 

104 312 301 78 75.00% 74.09% 

105 3465 4176 858 75.24% 79.45% 

 

103 105 

100 0 0 0   

101 0 0 0   

102 15 3 4 73.33% -33.33% 

103 32 29 6 81.25% 79.31% 

104 779 300 497 36.20% -65.67% 

105 3195 4187 882 72.39% 78.93% 

  

104 105 

100 0 0 0   

101 0 0 0   

102 0 3 0  100.00% 

103 31 29 32 -3.23% -10.34% 

104 615 312 677 -10.08% -116.99% 

105 3603 4182 3117 13.49% 25.47% 

 

105 105 

100 0 0 3   

101 0 0 17   

102 0 3 47   

103 31 29 808 -2506.45% -2686.21% 

104 863 298 2129 -146.70% -614.43% 

105 3479 4320 30213 -768.44% -599.38% 

 

Same experiments have been done with Java arraylist by its delete(index) function as well as with C++ vector 

by its erase(index) function. Then comparisons have been made for the total running time taken by these 

deletions required in HAL, Java arraylist and C++ vector. The result is shown in Table 3. From this table it can 

be seen that when the chunk size is 102, 103 and 104, HAL substantially outperforms both Java arraylist and 

C++ vector. 
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TABLE 3 

EXPERIMENTAL RESULTS FOR THE THIRD INPUT SETTING WITH ONLY DELETE OPERATIONS. 

Original 

Size 

(Chunk 

size) 

Number of 

Elements 

(already 

available in 

HAL by 

append) 

Number of 

Deletion 

(Randomly) 

Time (ms) Speed up Over 

ArrayList 

(java) 

Vector 

(C++) 
HAL 

ArrayList 

(java) 

(%) 

Vector 

(C++) 

(%) 

100 105 

100 0 0 0   

101 0 0 0   

102 0 5 15  -200.00% 

103 31 55 468 -1409.68% -750.91% 

104 608 467 1492 -145.39% -219.49% 

105 811 2127 10051 -1139.33% -372.54% 

 

10 105 

100 0 0 0   

101 0 1 0  100.00% 

102 0 5 0  100.00% 

103 31 48 31 0.00% 35.42% 

104 577 458 967 -67.59% -111.14% 

105 1248 2133 6644 -432.37% -211.49% 

 

102 105 

100 0 0 0   

101 0 1 0  100.00% 

102 0 5 0  100.00% 

103 32 48 0 100.00% 100.00% 

104 561 458 32 94.30% 93.01% 

105 1373 2140 329 76.04% 84.63% 

 

103 105 

100 0 0 0   

101 0 0 0   

102 0 4 0  100.00% 

103 31 42 0 100.00% 100.00% 

104 702 456 15 97.86% 96.71% 

105 1373 2114 125 90.90% 94.09% 

 

104 105 

100 0 0 0   

101 0 1 0  100.00% 

102 31 5 0 100.00% 100.00% 

103 468 48 31 93.38% 35.42% 

104 640 451 203 68.28% 54.99% 

105 1170 9179 1028 12.14% 88.80% 

 

105 105 

100 0 0 0   

101 0 0 15   

102 0 5 16  -220.00% 

103 31 49 218 -603.23% -344.90% 

104 799 464 2108 -163.83% -354.31% 

105 1170 2126 10221 -773.59% -380.76% 

 

D. Random, append, insert and delete 

In the next two settings, experiments have been done for randomly applying the three functions Append(x), 

Insert(x, i) and Delete(x, i). In the first of these two settings, H has 105 elements, which were added by append 

functions. Then elements are randomly appended, inserted and deleted from H. Insertion and deletions are done 
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in random positions. The chunk size is varied from 1 to 105. The number of operations performed are from 1 to 

105.  

TABLE 4  

EXPERIMENTAL RESULTS FOR APPENDING, INSERTION AND DELETION APPLIED RANDOMLY ON NON-EMPTY H. 

Original 

Size 

(Chunk 

size) 

Number of 

Elements 

already 

available in 

HAL by 

append 

Number of 

Append, 

Insertion & 

Delete 

(Randomly) 

Time (ms) Speed up Over 

ArrayList 

(java) 

Vector 

(C++) 
HAL 

ArrayList 

(java) 

(%) 

Vector 

(C++) 

(%) 

100 105 

100 0 0 2 0  

101 0 0 7 0  

102 2 3 8 -300.00% -166.67% 

103 25 24 113 -352.00% -370.83% 

104 651 257 1046 -60.68% -307.00% 

105 1474 2794 18496 -1154.82% -561.99% 

 

10 105 

100 0 0 1   

101 1 0 2 -100.00%  

102 3 2 4 -33.33% -100.00% 

103 26 25 15 42.31% 40.00% 

104 706 260 354 49.86% -36.15% 

105 1527 2791 6844 -348.20% -145.22% 

 

102 105 

100 0 0 0   

101 0 1 0  100.00% 

102 3 2 2 33.33% 0.00% 

103 15 25 7 53.33% 72.00% 

104 255 257 47 81.57% 81.71% 

105 1998 2837 272 86.39% 90.41% 

 

103 105 

100 0 0 0   

101 0 1 0  100.00% 

102 3 2 3 0.00% -50.00% 

103 32 25 7 78.13% 72.00% 

104 644 258 33 94.88% 87.21% 

105 2111 2800 175 91.71% 93.75% 

 

104 105 

100 0 0 0   

101 0 1 0  100.00% 

102 2 3 7 -250.00% -133.33% 

103 47 24 32 31.91% -33.33% 

104 202 256 166 17.82% 35.16% 

105 1838 2810 1349 26.61% 51.99% 

 

105 105 

100 0 0 0   

101 0 1 9  -800.00% 

102 0 3 36  -1100.00% 

103 28 28 140 -400.00% -400.00% 

104 847 262 1304 -53.96% -397.71% 

105 1856 2792 13767 -641.76% -393.09% 

 

Same experiments have been done with corresponding append, insert or delete functions in Java arraylist by 

its append (data), insertElement (data, index), and delete(index) functions. It has been done similarly in C++ 

vector by its push_back(data), insert(index, data), and erase(index) functions. Then comparison have been 
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made for the total running time taken by these operations in HAL, Java arraylist and C++ vector. The result is 

shown in Table 4. From this table it can be seen that when the chunk size is 102, 103 and 104, HAL substantially 

outperforms both Java arraylist and C++ vector. 

In the second of these two settings, the same experiment has been done, but H remains empty at the beginning. 

The result is shown in Table 5. Once again, from this table it can be seen that when the chunk size is 102, 103 

and 104, HAL substantially outperforms both Java arraylist and C++ vector. 

TABLE 5  

EXPERIMENTAL RESULTS FOR APPENDING, INSERTION AND DELETION APPLIED RANDOMLY ON EMPTY H. 

Original 

Size 

(Chunk 

size) 

Number of 

Elements, 

intially HAL 

is empty 

Number of 

Append, 

Insertion & 

Delete 

(Randomly) 

Time (ms) Speed up Over 

ArrayList 

(java) 

Vector 

(C++) 
HAL 

ArrayList 

(java) 

(%) 

Vector 

(C++) 

(%) 

100 0 

101 0 0 0   

102 1 0 0 100.00%  

103 2 5 0 100.00% 100.00% 

104 9 40 31 -244.44% 22.50% 

105 178 577 7456 -4088.76% -1192.2% 

 

10 0 

101 0 0 0   

102 0 0 0   

103 1 4 0 100.00% 100.00% 

104 7 45 0 100.00% 100.00% 

105 181 602 390 -115.47% 35.22% 

 

102 0 

101 0 0 0   

102 0 0 0   

103 1 4 0 100.00% 100.00% 

104 7 39 0 100.00% 100.00% 

105 179 583 46 74.30% 92.11% 

 

103 0 

101 0 0 0   

102 0 0 0   

103 2 4 0 100.00% 100.00% 

104 7 40 16 -128.57% 60.00% 

105 191 571 140 26.70% 75.48% 

 

104 0 

101 0 0 0   

102 0 0 15   

103 1 4 16 -1500.00% -300.00% 

104 7 43 140 -1900.00% -225.58% 

105 194 592 1297 -568.56% -119.09% 

 

105 0 

101 0 2 15  -650.00% 

102 0 2 31  -1450.0% 

103 2 4 125 -6150.00% -3025.0% 

104 7 43 1248 -17728.5% -2802.3% 

105 188 595 12152 -6363.83% -1942.3% 
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IV. CONCLUSION 

In this paper, a new and efficient dynamic array, called hybrid dynamic array (HAL), has been presented. 

HAL has been presented with some basic operations, such as append, insert, delete. The running time of these 

operations are within O(1),  O(m+c) and O(m+c), respectively, where m is the number of chunks in a HAL and 

c is a user defined parameter. As m and c can be smaller than n, these running times are much faster than O(n), 

which is taken by some similar operations in array and linked list. HAL has also been implemented in Java and 

have been compared with Java and C++ by their similar dynamic array library functions. The experimental 

results show that HAL can perform faster than Java and C++ when c is about half of n. Dynamic arrays are in 

high use in popular programming languages such as in Java, C++ and Python. They are also in use in the popular 

software and platforms such as in Android, Facebook and Emacs. Therefore, we believe that HAL can be a 

good choice by the programmers and software developers. In future, we would like to revise HAL so that it 

performs better for higher or lower values of c as well. 
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