
Hybrid Array List: An Efficient Dynamic

Array with Linked List Structure
Mutaz Rasmi Abu Sara #1, Mohammad F. J. Klaib #2, Masud Hasan #3

Department of Computer Science, Taibah University, Madina Al Munawarah, Saudi Arabia
1 mabusara@taibahu.edu.sa

2 mklaib@taibahu.edu.sa
3 hmasud@taibahu.edu.sa

Abstract

In this paper, a novel and efficient dynamic array, called hybrid array list (HAL), has been presented.

A HAL H has the structure of a linked list, but each node is an array of size at most 2c, where c is

an initial array size provided by the user. As elements are added or deleted in H, it grows or shrinks

by the number of nodes as well as by the size of the arrays in the nodes. We consider the operations

append, insert and delete as well as a helping operation actual position in H. These operations in

worst case run in O(1), O(m+c), O(m+c) and O(m) times, respectively, where m is the number of

nodes in H. Worst-case running time of similar operations in standard linked list or array are O(n),

where n is the total number of elements. As both m and c are no more than n, theoretically HAL is

faster than array and linked list. Experimentally, HAL has been implemented and compared with

similar operations in array list of Java and vector of C++. Our results show that HAL can perform

substantially better when c is about half of the total number of elements.

Keywords: Dynamic array, linked list, data structure, hybrid array list

Abstrak

Kertas kerja ini akan membentangkan suatu tatasusunan yang baru dan dinamik, dinamakan hybrid

array list (HAL). HAL H mempunyai struktur suatu senarai berantai, tetapi setiap nod, paling besar,

ialah suatu tatasusunan bersaiz 2c, yang mana c ialah saiz tatasusunan awal yang ditetapkan oleh

pengguna. Apabila elemen ditambah atau dihapuskan dalam H, ia akan membesar atau menguncup

mengikut bilangan nod dan juga mengikut saiz tatasusunan dalam nod tersebut. Kami

mengambilkira operasi append, insert dan delete serta suatu operasi pembantu actual position dalam

H. Pada jangkaan terburuk, operasi ini berlari O(1), O(m+c) dan O(m) kali masing-masing, yang

mana m adalah bilangan nod dalam H. Kes terburuk masa berlari operasi serupa dalam senarai

berantai standad atau tatasusunan adalah O(n), yang mana n ialah jumlah bilangan elemen. Oleh

kerana kedua-dua m dan c adalah tidak lebih dari n, maka secara teori HAL adalah lebih laju dari

tatasusunan dan senarai berantai. Sebagai eksperimen, kami telah melaksanakan HAL dan

membandingkan operasi tersebut dengan operasi serupa dalam senarai tatasusunan JAVA dan vector

C++. Keputusan kami adalah HAL menunjukkan prestasi jauh lebih baik apabila c lebih kurang

separuh dari jumlah bilangan elemen-elemen.

Katakunci: Tatasusunan dinamik, senarai berantai, struktur data, senarai tatasusunan hibrid

OPEN ACCESS

ISSN 2460-9056
socj.telkomuniversity.ac.id/indojc

Ind. Journal on Computing
Vol. 5, Issue. 3, December 2020. pp. 47-62

doi:10.34818/indojc.2021.5.3.527

Received on January, 2020. Accepted on December, 2020

http://socj.telkomuniversity.ac.id/indojc

I. INTRODUCTION

rray and linked list are two most basic and primitive data structures used in computer programming. Both

of them contain a set of similar items. An array has fixed size and is defined by the user at the beginning

of a program. The memory allocated for an array is contiguous in the physical memory of a computer. The

elements are stored in sequence in the memory. Once defined, the size of an array cannot be changed. The most

important advantage of an array is that its elements can be accessed randomly by their indices in constant time

per element. See Fig. 1.

On the other hand, a linked list stores element in nodes---one node for each element. A node contains an

element as well as a link to the next node (and another link to the previous node if the linked list is a doubly

linked list). The memory for each node is allocated dynamically during the run time of a program. Therefore,

the memory allocated by a linked list is not contiguous. This is an advantage in the sense that for a large number

of elements a large size of contiguous memory is not required (unlike an array). Another advantage of a linked

list is that the number of elements is not fixed. As long as there is enough memory, the elements can be added

in a linked list. However, accessing elements in a linked list is slower than that in an array. In a linked list, an

element must be accessed sequentially after moving from the start node to the destination node. In worst case,

this time is linear to the number of elements in a linked list. See Fig. 1 for more detail.

Array and linked list also greatly differ in insertion and deletion of elements. In an array, insertion and

deletion at specific position is expensive, as elements are to be shifted towards left or right respectively. This

can take time linear to the number of elements in the array. In contrast, insertion and deletion are easier and

faster in a linked list. A node can be inserted at any position in contestant time by manipulating some fixed

number of links of the nodes involved. This is constant per insertion or deletion.

There are some other comparisons between array and linked list. Standard textbooks on algorithms and data

structures contain chapters on array and linked list with discussion on their relative advantages and

disadvantages. Such as, the textbooks [1-5] can be seen for this purpose.

A. Dynamic arrays

For a long time, researchers are trying to find some data structures that can capture the advantages of both

array and linked list. In particular, the effort was made to find a data structure that can access the elements in a

Fig. 1. (a) An array. (b) A linked list. (c) A hybrid array list (HAL).

A

Sara et al.
Hybrid Array List... 48

faster way like an array, and at the same time can maintain variable number of elements like a linked list. The

most successful innovation so far is the concept of dynamic array [1, 6-16, 18].

The basic principle of a dynamic array is to create an array of fixed size at the beginning. Then the elements

are appended, inserted or deleted as like an array. Because of appends and insertions, at any time if the dynamic

array becomes full, a new array is created with an increased size. The elements from the old array is copied to

the new array along with the newly appended or inserted element. Then the old array is freed. The factor by

which the size of the array is increased can vary. However, the usual value of this factor is 1.125 [14], 1.5 [11,

13, 15, 16] or 2 [1, 6, 12].

Similarly, if the dynamic array size becomes too small because of deletions, a new array is created with

smaller size and the elements from the old array, excluding the deleted element, are copied to the new array.

Then the old array is freed. Again, the factor by which the array size is reduced can vary like 0.5 [1] or 0.25 [1].

B. Variations of dynamic array

It may be difficult to find a non-trivial computer program that does not use an array. However, the use of

dynamic array is also becoming more common as the programmers want to get the advantages of variable size

of a dynamic array. This can be noticed from the practical point of view. Popular and widely used programming

languages such as Java, C++ and Python implement dynamic arrays in their standard library functions. Dynamic

array is implemented as array list in Java [11, 17], vector in C++ [12, 15] and list in Python [6, 14]. Their

implementations are different based on the factor by which the size of the array is increased, which is 1.5 for

Java arraylist [11] and C++ vector [15], and 1.125 for Python list [14]. Various popular software and platforms

also use or support dynamic array in their codes, such as Android (because its applications are developed in

Java), Facebook [16] and Emacs [18, 19].

Also, theoretically, there are several variations of dynamic arrays. The most basic version of a dynamic array

can be found in the textbooks on algorithms and data structures, such as in Cormen et al. [1]. In Cormen et al.

[1], the dynamic array is explained as an abstract data type (ADT), called dynamic table. The actual structure

of a dynamic table can be an array, or an array-implemented stack, heap, queue or hash table. The table size is

initially one. The elements are inserted and deleted into the table. When the table is full (due to the insertions),

its size is doubled by allocating a new table, copying the elements from the old table to the new table, and finally

freeing up the old table. Similarly, when the empty slots in the table (due to the deletions) are much high, its

size is made half by allocating a new table, copying the elements from the old table to the new table, and finally

freeing up the old table. The authors in [1] showed that the cost of an insertion or a deletion in a dynamic table

take constant amortized time on average. (Please recall that an amortized time is the average time required to

perform a sequence of operations over all the operations performed [Page 451 of 1, Page 34 of 5].)

Gap buffer [18] is a variation of dynamic array that works well when the insertion and deletion operations

are performed close to each other in the array position. For example, in text editors, users usually perform

insertion and deletion close to their current typing places. Therefore, gap buffers are useful in text editors [18,

19], such as in Emacs [18,19].

A hashed array tree (HAT) [9] is a dynamic array that maintains an array of pointers each pointing to a fixed

size array. Altogether these arrays are like leaves of same length and the array of pointers are their parents. As

the elements are stored in separated arrays of smaller size instead of one big array, HAT can reduce the amount

of shifting for insertion and deletion as well as the amount of copying due to automatic resizing of the array

when it is full.

Tiered vector is another variation of dynamic array presented by Goodrich et al. [8]. By their data structure,

insertion and deletion can be performed in O(n1/2) time, which is much less than O(n) required by an array.

Ind. Journal on Computing Vol. 5, Issue. 3, December 2021 49

Brodnik et al. [7] described a variation of dynamic array, which they call resizable array, where the insertion

and deletion operations can be performed in amortized as well as worst-case constant time.

C. Results in this paper

In this paper, yet another variation of dynamic array which is called hybrid array list (HAL) is presented. The

structure of a HAL H is a linked list. Each node, also called a chunk, in H is an array of size at most 2c, where

c is an initial array size determined by the user. As the elements are added and deleted in H, it grows or shrinks

both by the number of nodes in H as well as the sizes of the arrays in the nodes of H. See Fig. 1 for an illustration.

Four operations are considered in H, which are actual position, append, insert and delete. At any time, all

chunks of H are full of elements (i.e., no empty space in their array), except the last chunk, for which there may

be empty spaces at the end of the array. Therefore, H can be considered as a single array with all empty spaces

at its end. An append operation adds an element to H at its end, which is the last available position in the last

chunk. A new chunk may be created based on whether the current size of the last chunk is c. Insert and delete

use an index that is counted from the beginning of H. An actual position operation finds the chunk that contains

that index. An insert operation inserts an element in the relative position of the index in that chunk if the chunk

is the last one in H. Otherwise, a new chunk is created with one size bigger and all elements as well as the new

element in relative position are copied to the new chunk. The old chink is deleted. A delete operation works in

a similar way.

The running time of these operations are O(m) for actual position, O(m+c) for insert and delete, and O(1) for

append, where m is the number of chunks in H. The value of m greatly depends upon the value of c. However,

in general, both m and c are much smaller than n and never more than n, where n is the total number of elements

in H. As in both array and linked list, similar operations run in worst case in O(n) time, HAL is theoretically

faster than linked list and array. (Please note that writing ‘O’ notation with more than one parameter, as we

have written here with m and c, is not uncommon and is used for better accuracy in complexity analysis. For

example, see [Sections 15.4 and 23.2 of 1] for similarly written running times for some well-known algorithms.)

Experimentally, HAL is implemented with the abovementioned operations and compared with similar

operations in array list of Java and vector of C++. The experimental results show that H can perform

substantially faster in practice when c is about half of n.

The value of c plays an important role in the efficiency of HAL. When c is high and close to n, the value of

m is much small. In that case, a HAL works more like an array. On the other hand, when c is small compared

to n, the value of m is much high. In that case, a HAL works more like a linked list. When the value of c is about

half of n, a HAL uses the benefit of both an array and a linked list, and therefore, works more efficiently. This

is evident from our experimental results too, which show that HAL performs much faster when c is about the

half of n (also see Section III).

II. HYBRID ARRAY LIST

We denote a chunk by C. We also use C specifically to denote the current chunk that we are working on. We

denote by |C| the number of elements in C. We use p as the index of the last element in the last chunk. These

are the notations along with c (initial chunk size), m (number of chunks in H) and n (total number of elements

in H) that we shall use most frequently in the rest of the paper.

Sara et al.
Hybrid Array List... 50

A. HAL operations

a. Initialization

In the initialization phase, a new HAL H is created. It creates, by a CreateNode function, only one empty

chunk C of size c. The current chunk is C. See Algorithm 1 for the pseudo code of the initialization phase in

more detail.

All the steps for initializations, including the CreateNode function, run in constant time. Therefore, the

following theorem is evident.

Theorem 1: An initialization of H takes O(1) time.

Algorithm 1: Pseudo code for Initialization and CreateNode().

b. Actual position

An actual position operation, denoted as ActualPosition(i), works as follows. The index i is from the

beginning of H. Let C be the chunk that contains this index i. Let j be the index of C where i maps to. Note that

j<=i. If C is the only chunk in H, then i and j have the same value. If H has more than one chunk, then j is i

minus the total number of elements in the chunks before C. ActualPosition(i) returns j. Please see Algorithm 2

for the pseudo code of ActualPosition(i).

ActualPosition(index)

Define previous ← NULL

Define counter ← current.ARR.length;

while (index >= counter and current.next != null)

previous ← current

current ← current.next

counter ← counter + current.arr.length

Return actualPosition ← Position – (counter - current.ARR.length)

Algorithm 2: Pseudo code for ActualPosition(i).

The following theorem gives the running time of ActualPosition(i).

Theorem 2: ActualPosition(i) in H runs in O(m) time.

Proof: In worst case, i may map to the last chunk of H. Therefore, we need to traverse all m chunks of H by

following the next links. This takes O(m) time.

InitializeHAL(chunkSize):

Define a global counter totalNumberofElements ← 0

Define a global integer atPosition ← 0

Define a global variable startNode ← CreateNode(chunkSize)

Define a global variable tail ← startNode

Define a global variable current = start;

Define a global variable previous = null;

CreateNode (chunkSize):

Create a newNode that contains an array ARR[chunkSize]

nextNode ← NULL

Ind. Journal on Computing Vol. 5, Issue. 3, December 2021 51

c. Append

An append operation, denoted as Append(x), adds an element x in the first available position, which is p+1,

in the last chunk. If the last chunk has c elements, then a new chunk C of size c is created at the end of H and x

is inserted at the first position of C. Please see Fig. 2 and see Algorithm 3 for the pseudo code of Append(x).

Note that append operations always keep the size of a chunk within c.

Fig. 2. Appending an element in H. (a) Last chunk has less than c elements. (b) Last chunk has c elements.

The following theorem gives the running time of Append(x).

Theorem 3: Append(x) in H can be done in O(1) time.

Proof: All the steps in Append(x) run in O(1) time. Therefore, the total number of time is O(1).

Append(newDataElement):

if (atPosition >= chunkSize)

 atPosition ← 0

 tail.next ← CreateNode(chunkSize);

 tail ← tail.next

tail.ARR[atPosition] ← newDataElement;

atPosition ← atPosition + 1

totalNumberofElements ← totalNumberofElements + 1

Algorithm 3: Pseudo code for Append(x).

d. Insert

An insert operation, denoted as Insert(x, i), inserts an element x in position i in H. If i is more than the number

of elements in H, then x is simply appended at the end of H by Append(x). This will ensure that the newly

inserted element is contiguous with the exiting elements. If i is no more than the number of elements in H, then

Insert(x, i) works in two steps. First it finds, by using ActualPosition(i), the chunk that contains the index i as

well as the actual position of i in that chunk. Let that chunk be C and let j be the actual position of i in C.

In the next step, it inserts x in C at j. The insertion is easy if C is the last chunk. If C is the last chunk and

there is an empty space in C, then x is inserted at j by shifting all elements after j by one position to the right. If

C has no empty space, then a new chunk C' of size c is created at the end of H. The last element of C is copied

Sara et al.
Hybrid Array List... 52

to the first position of C', and thus making the last space empty in C. The remaining elements after j in C are

shifted by one position to the right and x is inserted at j. Finally, C' is made the tail node. Note that an insertion

in the last chunk keeps its size c.

If C is not the last chunk, then there are two cases based on the value of |C|: (1) |C| < 2c and (2) |C| = 2c. In

Case (1), a new chunk C' is created with size |C|+1. All elements of C from position 0 to j-1 are copied to C' in

positions 0 to j-1, then x is inserted at position j in C', and then all elements of C from position j to |C|-1 are

copied to C' in positions j+1 to |C|. Finally, C is replaced by C' in H with necessary link updates and C is deleted.

Fig. 3. Inserting an element x into H. The chunk in which x is to be inserted has (a) less than 2c elements and (b) 2c elements.

In Case (2), there can be further two cases: (2a) j < c and (2b) j >= c. In both cases, two new chunks C' and

C" are created of size c each. In Case (2a), all elements of C from position 0 to j-1 are copied to C' in positions

0 to j-1, then x is inserted at position j in C', and then all elements of C from position j to c-2 are copied to C' in

positions j+1 to c-1. All elements of C from position c-1 to 2c-2 are copied to C" in positions 0 to c. In Case

(2b), all elements of C from position 0 to c-1 are copied to C' in positions 0 to c-1. All elements of C from

position c to j-1 are copied to C" in positions 0 to j-1, then x is inserted into C" in position j, and all elements

of C from position j to 2c-2 are copied to C" in positions j+1 to 2c-1. Finally, C is replaced by C' and C" in

sequence in H with necessary link updates and C is deleted. Please see Fig. 3 and please see Algorithm 4 for

the pseudo code of Insert(x, i). Note that, insert operations allow the size of a chunk to grow beyond c, but it

keeps the size within 2c.

The following theorem gives the running time of Insert(x, i).

Theorem 4: Insert(x, i) in H can be done in O(m+c) time, where m is the number of chunks in H and c is the

chunk size.

Proof: By Theorem 2, finding C and j takes O(m) time. If C is the last chunk, then for inserting x in C, in

worst case all elements of C may need to be shifted right by one position when the value of j may be one. Since

C can have at most c elements, it takes O(c) time. Moreover, a new chunk may need to be created when C is

full, which would take O(1) time. Therefore, the total time for inserting in the last chunk is O(c) + O(1) = O(c).

Ind. Journal on Computing Vol. 5, Issue. 3, December 2021 53

If C is not the last chunk, then copying one by one all elements of C along with x to C' and possibly to C" takes

O(|C|+1). Since C is split when |C| is 2c, we have |C| <= 2c. Therefore, time for copying is O(2c+1) = O(c).

Finally, deleting C from H and inserting C' and C" in H require constant amount of pointer updates. Therefore,

total time for Insert(x, i) is O(m)+O(c) = O(m+c). (Please remember that writing this running time as O(m+c)

gives a better accuracy than writing it as O(max{m, c}).)

Insert(newDataElement, Position):

if (Position >= totalNumberofElements)

 Append(newDataElement)

 exit

Define actualPosition ← ActualPosition(Position)

if (current = tail)

if (atPosition <= tail.ARR.length - 1)

Shift all elements starting from actualPosition to the right.

tail.ARR [actualPosition] ← newDataElement;

if(atPosition = tail.ARR.length - 1){

temp1 ← CreateNode(chunkSize)

tail.next ← temp1

tail ← temp1

atPosition ← tail.ARR[0]

 else

atPosition ← atPosition + 1

else

 temp1 ← CreateNode(chunkSize)

 tail.next ← temp1

 temp1.ARR [0] ← tail. ARR[tail.ARR.length - 1];

 Shift all elements starting from actualPosition to the right, to insert the new element at

 the actualPosition.

 tail. ARR [actualPosition] ← newDataElement;

 tail ← temp1

 atPosition ← temp1.ARR[1]

else

if (current.ARR.length = (chunkSize * 2) - 1)

 temp1 ← CreateNode(chunkSize)

 temp2 ← CreateNode(chunkSize)

Copy elements from the current chunk to the new chunks while adding a new element to

the appropriate chunk using actualPosition

temp2.next ← current.next

temp1.next ← temp2

previous.next ← temp1

else

temp ← CreateNode(chunkSize + 1)

Copy elements from the current chunk to the new chunk while adding a new element at

actualPosition

temp.next ← current.next

previous.next ← temp

totalNumberofElements ← totalNumberofElements + 1

Algorithm 4: Pseudo code for Insert(x, i).

Sara et al.
Hybrid Array List... 54

e. Delete

A delete operation, denoted as Delete(i), deletes the element that is in position i in H. Similar to an insertion,

Delete(i) works in two steps. First it finds, by using ActualPosition(i), the chunk that contains the index i as

well as finds the actual position of i in that chunk. Let that chunk be C and let j be the actual position of i in C.

If C is the last chunk and there are other elements than x, then x is deleted by shifting all elements from position

j to the last element by one position to the left. If x is the only element in C, then C is deleted.

If C is not the last chunk, then there are two cases: (1) |C| = 1 and (2) |C| > 1. In Case (1), C will be deleted

with necessary pointer updates in H. In Case (2), a new chunk C' is created with size |C|-1. All elements of C

from position 0 to j-1 are copied to C' in position 0 to j-1, and then all elements of C from position j+1 to |C|-1

are copied to C' in position j to |C|-2. Finally, C is replaced by C' in H with necessary link updates and C is

deleted. Please see Fig. 4 and please see Algorithm 5 for the pseudo code of Delete(x).

Theorem 5: Delete(x) in H can be done in O(m+c) time, where m is the number of chunks in H and c is the

chunk size.

Proof: The analysis is similar to that for an insertion. By Theorem 2, finding C and j takes O(m) time. If C is

the last chunk, then for deleting x from C, in worst case all elements of C may need to be shifted left by one

position when the value of j is one. As C can have at most c elements, it takes O(c) time. If C needs to be

deleted, then that can be done by updating some pointers in O(1) time. Therefore, the total time for deleting

from the last chunk is O(c) + O(1) = O(c).

If C is not the last chunk, then copying one by one all elements of C along without x to C' takes O(|C|). Since,

C can have at most 2c elements, time for copying these elements is O(2c) = O(c). Finally, deleting C from H

and inserting C' in H require constant amount of pointer updates. Therefore, total time for Delete(x) is

O(m)+O(c) = O(m+c).

 Fig. 4. Deleting an element x from H. The chunk from which x is to be deleted has (a) 1 element and (b) more than 1 element.

Ind. Journal on Computing Vol. 5, Issue. 3, December 2021 55

DeleteElement (Position)

Define actualPosition ←ActualPosition(Position)

if (current = tail) {

if (tail.ARR.length = 1)

temp ← CreateNode(chunkSize)

if(startNode == tail)

startNode ← temp

tail ← temp

atPosition ← tail.ARR[0]

else

Shift all elements starting from actualPosition + 1 to the left.

atPosition = atPosition - 1;

 else

 if (current.ARR.length = 1)

 if (current = startNode)

 startNode ← NULL

 tail ← NULL

else

previous.next ← current.next

else

temp ← CreateNode (current.ARR.length - 1)

temp.next ← current.next

 Copy elements from the current chunk to the new chunk without the element at

actualPosition

previous.next ← temp

totalNumberofElements ← totalNumberofElements - 1

Algorithm 5: Pseudo code for Delete(x).

III. EXPERIMENTAL RESULTS

HAL has been implemented in Java with the operations append, insert, and delete for H. Experiments have

been done with these operations in different input settings and these operations have been compared with similar

library functions in Java and C++.

A. Only append

In the first input setting, the experiment performs the function Append(x) only. Initially, H is empty. The

elements are added in H by Append(x). The chunk size is varied from 1 to 108. The number of elements

appended are 105 and 107. For chunk size 10, the experiment has been done in more refined form by varying

the number of append from 103 to 108. Same elements have been inserted into an arraylist of Java by its

append(data) function as well as into a vector of C++ by its push_back(data) function. Then comparisons have

been made between the total running times taken by these appends required by HAL, Java array list and C++

vector. The result is shown in Table 1.

From this table it can be seen that in all cases, HAL substantially outperforms both Java arraylist and C++

vector. When the chunk size or the number of append become very high like 107, HAL gives an out of memory

error. Java arraylist gives the similar error for these cases as well as other cases with lower chunk size and lower

number of appends.

Sara et al.
Hybrid Array List... 56

TABLE 1

EXPERIMENTAL RESULTS FOR THE FIRST INPUT SETTING WITH ONLY APPEND OPERATIONS.

Original

Size

(Chunk

size)

Number of

Additions

Time (ms) Speed up Over

ArrayList (java)

Vector

(C++)
HAL

ArrayList

(java)

(%)

Vector

(C++)

(%)

10

103 1 1 1 0.00% 0.00%

104 2 10 1 50.00% 90.00%

105 7 100 3 57.14% 97.00%

106 159 993 12 92.45% 98.79%

107 3145 9373 424 86.52% 95.48%

108 OutOfMemoryError 91286 OutOfMemoryError

100

105

7 118 1 85.71% 99.15%

101 6 107 3 50.00% 97.20%

102 5 101 3 40.00% 97.03%

103 6 102 2 66.67% 98.04%

104 6 110 3 50.00% 97.27%

105 5 101 2 60.00% 98.02%

106 9 103 9 0.00% 91.26%

107 19 102 13 31.58% 87.25%

108 OutOfMemoryError 108 OutOfMemoryError

100

107

2320 9276 469 79.78% 94.94%

101 1913 9262 101 94.72% 98.91%

102 1693 9071 103 93.92% 98.86%

103 1716 9245 98 94.29% 98.94%

104 OutOfMemoryError 9084 107 98.82%

105 OutOfMemoryError 9279 105 98.87%

106 OutOfMemoryError 9132 109 98.81%

107 OutOfMemoryError 9326 95 98.98%

108 OutOfMemoryError 9043 OutOfMemoryError

B. Only insert

In the next input setting, experiments have been done for the function Insert(x, i) only. Before applying the

insert operations, H contains 105 elements, which were added by append functions. Then elements are inserted

into H. Insertions are made in random positions (i.e., with random values of i). The chunk size is varied from 1

to 105. The number of elements inserted are from 1 to 105. Same experiments have been done with Java arraylist

by its insertElement(data, index) function as well as with C++ vector by its insert(index, data) function. Then

comparisons have been made for the total running time taken by these insertions in HAL, Java arraylist and

C++ vector. The result is shown in Table 2. From this table it can be seen that when the chunk size is 102, 103

and 104, HAL substantially outperforms both Java arraylist and C++ vector.

C. Only delete

In the next input setting, experiments have been done for the function Delete(x, i) only. It has been done in a

way similar to insert. Before applying the delete operations, H contains 105 elements, which were added by

append functions. Then elements are deleted from H. Deletions are done in random positions (i.e., with random

values of i). The chunk size is varied from 1 to 105. The number of elements deleted are from 1 to 105.

Ind. Journal on Computing Vol. 5, Issue. 3, December 2021 57

TABLE 2

EXPERIMENTAL RESULTS FOR THE SECOND INPUT SETTING WITH ONLY INSERT OPERATIONS.

Original

Size

(Chunk

size)

Number of

Elements

already

available in

HAL by

append

Number of

Insertion

(Randomly)

Time (ms) Speed up Over

ArrayList

(java)

Vector

(C++)
HAL

ArrayList

(java)

(%)

Vector

(C++)

(%)

100 105

100 0 0 0

101 0 0 16

102 17 3 31 -82.35% -933.33%

103 31 30 852 -2648.39% -2740.00%

104 267 301 1955 -632.21% -549.50%

105 2852 4207 63976 -2143.20% -1420.70%

10 105

100 0 0 0

101 0 0 0

102 0 3 0 100.00%

103 38 27 31 18.42% -14.81%

104 318 308 416 -30.82% -35.06%

105 3895 4498 10114 -159.67% -124.86%

102 105

100 0 0 0

101 0 1 0 100.00%

102 3 3 2 33.33% 33.33%

103 37 28 7 81.08% 75.00%

104 312 301 78 75.00% 74.09%

105 3465 4176 858 75.24% 79.45%

103 105

100 0 0 0

101 0 0 0

102 15 3 4 73.33% -33.33%

103 32 29 6 81.25% 79.31%

104 779 300 497 36.20% -65.67%

105 3195 4187 882 72.39% 78.93%

104 105

100 0 0 0

101 0 0 0

102 0 3 0 100.00%

103 31 29 32 -3.23% -10.34%

104 615 312 677 -10.08% -116.99%

105 3603 4182 3117 13.49% 25.47%

105 105

100 0 0 3

101 0 0 17

102 0 3 47

103 31 29 808 -2506.45% -2686.21%

104 863 298 2129 -146.70% -614.43%

105 3479 4320 30213 -768.44% -599.38%

Same experiments have been done with Java arraylist by its delete(index) function as well as with C++ vector

by its erase(index) function. Then comparisons have been made for the total running time taken by these

deletions required in HAL, Java arraylist and C++ vector. The result is shown in Table 3. From this table it can

be seen that when the chunk size is 102, 103 and 104, HAL substantially outperforms both Java arraylist and

C++ vector.

Sara et al.
Hybrid Array List... 58

TABLE 3

EXPERIMENTAL RESULTS FOR THE THIRD INPUT SETTING WITH ONLY DELETE OPERATIONS.

Original

Size

(Chunk

size)

Number of

Elements

(already

available in

HAL by

append)

Number of

Deletion

(Randomly)

Time (ms) Speed up Over

ArrayList

(java)

Vector

(C++)
HAL

ArrayList

(java)

(%)

Vector

(C++)

(%)

100 105

100 0 0 0

101 0 0 0

102 0 5 15 -200.00%

103 31 55 468 -1409.68% -750.91%

104 608 467 1492 -145.39% -219.49%

105 811 2127 10051 -1139.33% -372.54%

10 105

100 0 0 0

101 0 1 0 100.00%

102 0 5 0 100.00%

103 31 48 31 0.00% 35.42%

104 577 458 967 -67.59% -111.14%

105 1248 2133 6644 -432.37% -211.49%

102 105

100 0 0 0

101 0 1 0 100.00%

102 0 5 0 100.00%

103 32 48 0 100.00% 100.00%

104 561 458 32 94.30% 93.01%

105 1373 2140 329 76.04% 84.63%

103 105

100 0 0 0

101 0 0 0

102 0 4 0 100.00%

103 31 42 0 100.00% 100.00%

104 702 456 15 97.86% 96.71%

105 1373 2114 125 90.90% 94.09%

104 105

100 0 0 0

101 0 1 0 100.00%

102 31 5 0 100.00% 100.00%

103 468 48 31 93.38% 35.42%

104 640 451 203 68.28% 54.99%

105 1170 9179 1028 12.14% 88.80%

105 105

100 0 0 0

101 0 0 15

102 0 5 16 -220.00%

103 31 49 218 -603.23% -344.90%

104 799 464 2108 -163.83% -354.31%

105 1170 2126 10221 -773.59% -380.76%

D. Random, append, insert and delete

In the next two settings, experiments have been done for randomly applying the three functions Append(x),

Insert(x, i) and Delete(x, i). In the first of these two settings, H has 105 elements, which were added by append

functions. Then elements are randomly appended, inserted and deleted from H. Insertion and deletions are done

Ind. Journal on Computing Vol. 5, Issue. 3, December 2021 59

in random positions. The chunk size is varied from 1 to 105. The number of operations performed are from 1 to

105.

TABLE 4

EXPERIMENTAL RESULTS FOR APPENDING, INSERTION AND DELETION APPLIED RANDOMLY ON NON-EMPTY H.

Original

Size

(Chunk

size)

Number of

Elements

already

available in

HAL by

append

Number of

Append,

Insertion &

Delete

(Randomly)

Time (ms) Speed up Over

ArrayList

(java)

Vector

(C++)
HAL

ArrayList

(java)

(%)

Vector

(C++)

(%)

100 105

100 0 0 2 0

101 0 0 7 0

102 2 3 8 -300.00% -166.67%

103 25 24 113 -352.00% -370.83%

104 651 257 1046 -60.68% -307.00%

105 1474 2794 18496 -1154.82% -561.99%

10 105

100 0 0 1

101 1 0 2 -100.00%

102 3 2 4 -33.33% -100.00%

103 26 25 15 42.31% 40.00%

104 706 260 354 49.86% -36.15%

105 1527 2791 6844 -348.20% -145.22%

102 105

100 0 0 0

101 0 1 0 100.00%

102 3 2 2 33.33% 0.00%

103 15 25 7 53.33% 72.00%

104 255 257 47 81.57% 81.71%

105 1998 2837 272 86.39% 90.41%

103 105

100 0 0 0

101 0 1 0 100.00%

102 3 2 3 0.00% -50.00%

103 32 25 7 78.13% 72.00%

104 644 258 33 94.88% 87.21%

105 2111 2800 175 91.71% 93.75%

104 105

100 0 0 0

101 0 1 0 100.00%

102 2 3 7 -250.00% -133.33%

103 47 24 32 31.91% -33.33%

104 202 256 166 17.82% 35.16%

105 1838 2810 1349 26.61% 51.99%

105 105

100 0 0 0

101 0 1 9 -800.00%

102 0 3 36 -1100.00%

103 28 28 140 -400.00% -400.00%

104 847 262 1304 -53.96% -397.71%

105 1856 2792 13767 -641.76% -393.09%

Same experiments have been done with corresponding append, insert or delete functions in Java arraylist by

its append (data), insertElement (data, index), and delete(index) functions. It has been done similarly in C++

vector by its push_back(data), insert(index, data), and erase(index) functions. Then comparison have been

Sara et al.
Hybrid Array List... 60

made for the total running time taken by these operations in HAL, Java arraylist and C++ vector. The result is

shown in Table 4. From this table it can be seen that when the chunk size is 102, 103 and 104, HAL substantially

outperforms both Java arraylist and C++ vector.

In the second of these two settings, the same experiment has been done, but H remains empty at the beginning.

The result is shown in Table 5. Once again, from this table it can be seen that when the chunk size is 102, 103

and 104, HAL substantially outperforms both Java arraylist and C++ vector.

TABLE 5

EXPERIMENTAL RESULTS FOR APPENDING, INSERTION AND DELETION APPLIED RANDOMLY ON EMPTY H.

Original

Size

(Chunk

size)

Number of

Elements,

intially HAL

is empty

Number of

Append,

Insertion &

Delete

(Randomly)

Time (ms) Speed up Over

ArrayList

(java)

Vector

(C++)
HAL

ArrayList

(java)

(%)

Vector

(C++)

(%)

100 0

101 0 0 0

102 1 0 0 100.00%

103 2 5 0 100.00% 100.00%

104 9 40 31 -244.44% 22.50%

105 178 577 7456 -4088.76% -1192.2%

10 0

101 0 0 0

102 0 0 0

103 1 4 0 100.00% 100.00%

104 7 45 0 100.00% 100.00%

105 181 602 390 -115.47% 35.22%

102 0

101 0 0 0

102 0 0 0

103 1 4 0 100.00% 100.00%

104 7 39 0 100.00% 100.00%

105 179 583 46 74.30% 92.11%

103 0

101 0 0 0

102 0 0 0

103 2 4 0 100.00% 100.00%

104 7 40 16 -128.57% 60.00%

105 191 571 140 26.70% 75.48%

104 0

101 0 0 0

102 0 0 15

103 1 4 16 -1500.00% -300.00%

104 7 43 140 -1900.00% -225.58%

105 194 592 1297 -568.56% -119.09%

105 0

101 0 2 15 -650.00%

102 0 2 31 -1450.0%

103 2 4 125 -6150.00% -3025.0%

104 7 43 1248 -17728.5% -2802.3%

105 188 595 12152 -6363.83% -1942.3%

Ind. Journal on Computing Vol. 5, Issue. 3, December 2021 61

IV. CONCLUSION

In this paper, a new and efficient dynamic array, called hybrid dynamic array (HAL), has been presented.

HAL has been presented with some basic operations, such as append, insert, delete. The running time of these

operations are within O(1), O(m+c) and O(m+c), respectively, where m is the number of chunks in a HAL and

c is a user defined parameter. As m and c can be smaller than n, these running times are much faster than O(n),

which is taken by some similar operations in array and linked list. HAL has also been implemented in Java and

have been compared with Java and C++ by their similar dynamic array library functions. The experimental

results show that HAL can perform faster than Java and C++ when c is about half of n. Dynamic arrays are in

high use in popular programming languages such as in Java, C++ and Python. They are also in use in the popular

software and platforms such as in Android, Facebook and Emacs. Therefore, we believe that HAL can be a

good choice by the programmers and software developers. In future, we would like to revise HAL so that it

performs better for higher or lower values of c as well.

REFERENCES
[1] Coreman, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009) Introduction to Algorithms. The MIT Press, Cambridge.
[2] Goodrich, M. T. and Tamassia, R. (2014) Algorithm Design and Applications. Wiley, U.S.

[3] Kleinberg, J. and Tardos, E. (2005) Algorithm Design. Pearson, U.S.
[4] Weiss, M. A. (2011) Discrete Structures and Algorithms Analysis in java. Pearson, U.S.

[5] Goodrich, M. T. and Tamassia, R. (2001) Algorithm Design: Foundations, Analysis, and Internet Examples, Wiley, U. S.

[6] Lambert, K. A. (2009) Fundamentals of Python: From First Programs through Data Structures. Course Technology, Boston.
[7] Brodnik, A., Carlsson, S., Demaine, E. D., Munro, I. J., and Sedgewick, R. (1999), Resizable Arrays in Optimal Time and Space.

Proceedings of the Workshop on Algorithms and Data Structures, Lecture Notes in Computer Science, Vancouver, BC, Canada, 11- 14

August, pp. 37-48, Springer, Berlin, Heidelberg.
[8] Goodrich, M. and Kloss, J. (1999) Tiered Vectors: Efficient Dynamic Arrays for Rank-Based Sequences, Proceedings of the

Workshop on Algorithms and Data Structures, Lecture Notes in Computer Science, Vol. 1663, Vancouver, BC, Canada, 11-14 August,

pp 205-216, Springer, Berlin, Heidelberg
[9] Sitarski, E. (1996), HATs: Hashed Array Trees., Dr. Dobb's Journal, 21, 11.

[10] IC_TECH_REPORT_200244 (2002) Fast Functional Lists, Hash-Lists, Deques and Variable Length Arrays, EPFL, Geneva,

Switzerland.
[11] Oracle, The source code of java.util.ArrayList class from OpenJDK 6,

http://hg.openjdk.java.net/jdk6/jdk6/jdk/file/e0e25ac28560/src/share/classes/java/util/ArrayList.java, last accessed: 16 April 2019.

[12] Sergei Danielian, C++ STL vector: definition, growth factor, member functions,
https://web.archive.org/web/20150806162750/http:/www.gahcep.com/cpp-internals-stl-vector-part-1/, last accessed: 16 April 2019.

[13] Google Groups, vector growth factor of 1.5. comp.lang.c++.moderated,

https://groups.google.com/forum/#!topic/comp.lang.c++.moderated/asH_VojWKJw%5B1-25%5D, last accessed: 16 April 2019
[14] python.org, List object implementation from python.org, http://svn.python.org/projects/python/trunk/Objects/listobject.c, last

accessed: 16 April 2019.

[15] Brais, Hadi, Dissecting the C++ STL Vector: Part 3 - Capacity & Size, https://hadibrais.wordpress.com/2013/11/15/dissecting-the-c-
stl-vector-part-3-capacity/, last accessed: 16 April 2019.

[16] GitHub, Inc. facebook/folly, https://github.com/facebook/folly/blob/master/folly/docs/FBVector.md, last accessed: 16 April 2019.

[17] Oracle, Javadoc on ArrayList, https://docs.oracle.com/javase/10/docs/api/java/util/ArrayList.html, last accessed: 16 April 2019.
[18] Mark C. Chu-Carroll, Gap Buffers, or, Don’t Get Tied Up With Ropes?, https://scienceblogs.com/goodmath/2009/02/18/gap-

buffers-or-why-bother-with-1, last accessed: 16 April 2019.

[19] The Buffer Gap, https://www.gnu.org/software/emacs/manual/html_node/elisp/Buffer-Gap.html, last accessed: 16 April 2019.

Sara et al.
Hybrid Array List... 62

