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Abstract
In this work, the implicit boundary integral method is implented to the homogeneous Hele-
Shaw problem with a multi-connected domain. This method based on the solution of layer
potential integral for the Laplace equation. The numerical technique is easy to implement,
based on the idea of averaging the parameterization near the boundary and applying the
Coarea formula. This technique changes the boundary integral into the Riemann integral that
is easy to compute numerically. The difficulty in the computation of hypersingular integral
occurs to compute the normal velocity of free boundary. The collocation technique is applied
to eliminate the hypersingular part in the integral equation. Also, the numerical results are
shown and its computation performance due to the appearance of a non-invertible matrix. In
result, this method is a new technique for such a boundary problem with implementing level
set method.

Keywords: Free boundary problem, Hele-Shaw problem, boundary integral method, level
set method.

Abstrak
Pada artikel ini dijelaskan implementasi metode integral permukaan secara implicit untuk
permasalahan Hele-Shaw dengan domain tidak terhubung. Metode ini dikembangkan dari
konsep solusi untuk persamaan Laplace dalam bentuk integral layer potensial. Dalam metode
ini, teknik numerik cukup mudah dilakukan, dikarenakan bentuk integral permukaan dirubah
menjadi integral Riemann melalui teknik rataan parameter dan rumus Coarea. Kendala dalam
menghitung intergal tak tentu dalam rumus normal velocity dilakukan dengan cara mengelim-
inasi hypersigularitas dengan teknik collocation. Terakhir, ditampilkan juga beberapa numerik
dan kondisi matriks selama komputasi berlangsung.

Kata Kunci: Free boundary problem, Hele-Shaw problem, boundary integral method, level
set method.
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I. INTRODUCTION

A. Motivation

IT is well known for the finite difference method (FDM) and finite element method (FEM) are usually
used to solve a partial differential equation numerically. In this article, the boundary integral is

considered to solve our problem, which is the equation for the evolution of the boundary equation.
This method works based on the integral equation in the potential theory of elliptic problem. In Hale-
Shaw problem, as seen in (8) free boundary problem appears in solving the elliptic equation. The function
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u is defined in the time depended domain �t, where its boundary evolving caused by the gradient of
u and some positive function g. Computationally, to solve the equation at time t, the domain at time t
must be known. FDM is simply to be implemented, but computationally it is not efficient for moving
boundary, since the domain mesh grid is not fixed in time. It happens as well in FEM; this method also
depends on constructing the mesh grid for a given domain. If the given domain change in time, then in
implementing FEM it is necessary to reconstruct the mesh grid in every time step. It causes to a higher
cost of computation time. Boundary integral method (BIM), considers only the change near the boundary.
Furthermore, the solution is constructed in the term boundary integral by finding a density defined on the
boundary by fitting a given boundary condition. These ideas relate to surface potential integral can be
read further in [4], [3], [1]. In [5], they propose an implicit way to present the boundary integral equation
using Coarea formula, such that the surface integral turn into Riemann integral equipped with its signed-
distance representation. An important advantage of implementing this method that explains in [5] is this
method is reliable for any arbitrary domain. This sustains a necessity for moving boundary problem with
general velocity movement. Hele-Shaw problem is known as a popular model of incompressible liquid’s
flow in between two parallel plates called Hele-Shaw cell. Such a cell firstly was introduced by Henry
Selby Hele-shaw as a practical model shown in his class to model a pressure driven flow of the fluid is
injected into a shallow geometry from the center of two parallel plates when the surface of the fluid is
bounded by another different viscous fluid or the air. The Hele-Shaw cell concept is also implemented to
model dendritic form in crystalization, which has been studied following the growth pattern of Safman-
Taylor in Hele-Shaw cell [7]. Also, this model is used in the application of the surface evolution between
viscous fluid and melting crystal, for instance, solidification or melting process. In three dimensions, this
model is used as a model of the porous medium problem, for instance the flow of water absorption inside
of the sand. In the industrial application, it is used in the plastic molding, importantly to determine the
way out for the melting plastic when it is filling the mold, which is the boundary between the melting
plastic and the air. For the detail explanation how this model works for plastic molding and petroleum
extraction, see [6].

B. Hele Shaw Problem

In this work, we perform Hele-Shaw problem in two dimensions, and the type of fluid we are working
on is Newtonian viscous fluid. The pressure driven flow is caused by a given source with constant pressure
in the middle of the parallel plates. The pressure driven flow in such phenomena is following the Darcy’s
Law that is a flow rate through the porous medium is proportional to the minus of pressure gradient of
viscous fluid. Accurately, it also depends on the viscosity of the fluid and permeability of the media, but
we assume they are constant for simplicity, such that from conservation law of mass, it is obtained the
equation for the density changing in time as follows,

⇢t � � · q̄ = 0 (1)

where ⇢ denotes the density over the unit volume, and u is a pressure. Since we assume the fluid is
incompressible, then the pressure satisfies only the Laplace equation. The governing equation can be
derived from the three dimensions Navier-stock equation by averaging the gap. Let �0 be a bounded
open domain. We assume that in time t the fluid is filling the domain �t � R2, and the boundary ��t is
a boundary between the liquid and the air. When the injected fluid evolves slow enough and the height
h of the plates is also small, the averaged velocity q̄ over of gap satisfying

q̄ = � h2

12µ
�u. (2)

Since we assume the permeability and the viscosity to be constant, without losing a generality, the
averaged of velocity proportional to the negative of pressure gradient, such that q̄ = ��u. Therefore,
the flow is almost stationary in between the gap of the plates.

�u = 0 in �t \ K, (3)

where K is the area inside of �t that is injected by the water continuously. There are two boundary
conditions in the moving boundary �t, the kinematic and the dynamic boundary condition. Since this
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work is neglecting the surface tension, the dynamic boundary condition is given to be,

u = 0 on ��t (4)

For the kinematic boundary condition, the fluid remains on the boundary in every time t with normal
velocity Vn,

Vn = q̄ · n (5)

where n is the outer normal velocity. Since the pressure in (�t)c is set to be zero (the water pressure in
the air), u can be understood as a level set, such that

Vn =
ut

|�u| = ��u · �u

|�u| (6)

�ut = |�u|2 (7)

Such a problem is called homogeneous Hele-Shaw problem with the media representation is given as
a constant, that is homogeneous all over the surface of the plates. Furthermore, instead of putting the
media as a constant, it modifies to be a positive continuous function depends on position and time, let us
denote as a function g(x, t), where 1

g(x,t) can be understood as a depth of the hole must be filled by the
fluid when the domain is evolving. Let K be a compact set with a smooth boundary satisfying �0 � K,
where �0 is an open domain in Rn with also smooth boundary.

�
����

����

�u(x, t) = 0 for (x, t) � (�t \ K) � (0, �)

ut = g(x, t)|�u|2 for(x, t) � ��t � (0, �)

u(x, t) = 1 for(x, t) � K � (0, �)

u(x, t) = 0 for(x, t) � (Rn \ �t) � (0, �)

(8)

For given a positive continuous function g(x, t), closed set K, and an initial domain �0 � K, the Hele-
Shaw problem is reformulated as the problem of finding the pair solution of (u, �t) satisfying (8), with
initial condition u(., 0) satisfying the Laplace equation in (�0 \K) with suitable boundary data as in (8).

II. LEVEL SET METHOD AND NUMERICAL ALGORITHM

Fast sweeping method is implemented in order to determine a level set function. Given a closed
hypersurface �, it is evolved by giving only the velocity in the normal direction. A boundary � is
defined through level set representation as a zero level set of level set function F , i.e for each point
y � �, it satisfies F (y(t), t) = 0. Thus, the level set evolution is following equation (9).

dF (y(t), t)

dt
= 0

� Ft + �F · y�(t) = 0

� Ft

|�F | +
�F

|�F | · y�(t) =
Ft

|�F | � ny · y�(t) =
Ft

|�F | + Vn = 0

(9)

where Vn := �ny · y�(t) is denoted as a normal velocity.

A. Initialization Technique

In the level set representation, �� : {y : F (y) = 0}, and its normal vector ny is defined as

ny :=
��F (y)

|�F (y)| . (10)

Therefore, respectively for the interior and exterior closest point x �� �� the distance to the boundary can
be computed exactly as finding d > 0, such that F (x ± d �F (x)

|�F (x)| ) = 0. Particular example for �� � R2

and level set function F (x) = x2
1 + x2

1 � C, the distance of x is computed by using

d =
(x · n̄(x)) ±

�
(x · n̄(x))2 � �n̄(x)�2F (x)

�n̄(x)�2
, (11)
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Figure 1: Ilustration how to initialize a distance function at node (i, j), in case the boundary intersects two points
of the node’s neighborhood edges.

where n̄(x) = ��F (x)
|�F (x)| .

If it is given only a level set data, the interpolation to compute the distance of the closest points to
the boundary may be needed, since the position of the boundary curve does not intersect the grid points.
Figure.1 describes the idea how to interpolate the distance at node in 2-D rectangular mesh grid. This
simple idea can be used in a case the curve is nice enough being in C1(��). Given a level set data
F (xi,j) on the meshgrid, it assumes the function F is piecewise linear function in the domain, such that
if the multiplication of F (xi,j) and the level set in its neighbors points returns negative, then the zero
level set {x|F (x) = 0} exists along the edge connecting xi,j to its neighbors. Then, the distance of xi,j

to the boundary is computed as

d(xi,j) = min
k=1,2,...,6

{dk},

where k indicates the surrounding points on the hexagon in Figure. 1 with xi,j as a center.

B. Fast Sweeping Algorithm

The notion of Fast Sweeping algorithm based on Godunov upwind difference scheme to solve Eikonal
equation. A detail description about this method can be found in [9]. In the case of distance function, a
viscosity solution d(x) � 0 and it satisfies the following Eikonal equation.

�
|�d(x)| = 1, for x � Rn

d(x) = 0, for x � �� � Rn.
(12)

Problem (12) is discretize using Godunov upwind difference scheme, such that partial derivative of
d(x), for x = (x1, x2, . . . , xn) � Rn is approximated to be

dxi(x) = max

�
d(x) � min{d(x + eih), d(x � eih)}

h
, 0

�
. (13)

Therefore, for n = 2, �x the discrete form for (12) can be written as

max
�
di,j � d̄i, 0

�2
+ max

�
di,j � d̄j , 0

�2
= h2 (14)

where, d̄i = min{di+1,j , di�1,j} and d̄j = min{di,j+1, di,j�1}.
By applying a periodic boundary condition, the one-sided nodes satisfy the following situation.

max
�
di,j � d̄i, 0

�2
+ max {di,j � di,j�1, 0}2 = h2. (15)

Gauss-Seidel iteration to sweep the whole distance value on the meshgrid.
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Table I: Error comparison Fast Sweeping computation performance between wo types of Initialization.

Size of neighbor-
hood �

Order of Accuracy for Initialization
type-1

Order of Accuracy for Initialization
type-2

3h 1.75 1.38
2h 1.85 1.39
1.5h 1.90 1.42
h 2.0 1.45

As describe in [9], it applied the computation for rectangular grid through four alternating directions
as the following ordering, such that for every (i, j) do the computation as follow.

1). i = 0, 1, . . . , I ; j = 0, 1, . . . , J 2). i = 0, 1, . . . , I ; j = J, J � 1, . . . , 1, 0

3). i = I, I � 1, . . . , 1, 0 ; j = J, J � 1, . . . , 1, 0 4). i = I, I � 1, . . . , 1, 0 ; j = 0, 1, . . . , J

There are several methods to compute the signed distance function after initialization. In this work
uses a simple algorithm called Fast Sweeping Algorithm. The computation performance of this method
depend on the accuracy in the initialization step. Table I shows the error order of Fast sweeping algorithm
with two kinds of initialization as described in Figure. 1 for the circle. It concludes that the type-2 returns
higher accuracy than the other.

III. IMPLICIT BOUNDARY INTEGRAL METHODS

In level set method, the interface is described as a level set function in a zero level set. In a problem
(9), the interface �� can be defined as {x � ��|F (x) = 0}, where F is a level set function. One of
level set function that commonly used is a signed distance function. A signed distance function can be
used to describe implicitly the interface, and it has a gradient that does not vanish around ��. Moreover,
it has a nice property that is |�d| = 1. Distance function is a level set function that returns the shortest
distance to the nearest point on the interface. In the interface which usually can be described as a closed
curve (in 2D) or closed surface, it uses a Signed distance function to sign whereas the point in interior
or exterior of domain surrounded by the interface. Signed distance function respect to boundary �� is
defined as follow.

d(x) :=

�
�

�

inf
y��C

|x � y| if x � �

� inf
y��

|x � y| if x � �̄c
(16)

One of the important properties of signed distance function if the boundary �� sufficiently smooth is,
the distance function is also smooth in some tubular neighborhood of ��, linear and has slope 1 along
the normal direction to the interface, i.e |�d| = 1. Therefore, by using d(x) as a level set function, the
unit outer normal vector of �� can be obtain by the following formula.

n = � �d

|�d|
= ��d

According to the form of boundary integral, signed distance function is required to represent the
boundary in the integral formula implicitly. The idea of the formulation is described by [5]. The notion
is based on averaging the parameterization of boundary integral equation by using delta Dirac function,
then use the Coarea formula, such that the boundary integral changes the form into the Riemann integral
defined in Rn. The signed distance function lies in the new form of integral form as we compute the
value. Regularization of delta Dirac function turnout the computation consider only the points on the
tubular neighborhood. See Figure. 2 for the illustration. From this state, the well known numerical integral
technique can be used for computation.
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Figure 2: figure
Tubular neighborhood of ��

We define a tubular neighborhood of �� with the distance not larger than �.
T� := {x � �; |d(x)| � �} where, � > 0

or T� can be expressed as
T� := {��� : �� � � � �}

where ��� := {x : d(x) = �}.

A. Solution in the form of boundary integral

For simplicity, denote �t = �K � ��t. The solution of (8) can be constructed as a boundary integral
form. We consider Double-Layer Potential (DLP) integral to construct the solution of Laplace problem
in �t \ K, which is part of Hele-Shaw. Then, for x � � \ K the solution of (8) is:

u(x) =

�

�t

�(y)
��(x � y)

�ny
dy + A�(x, z0), for some z0 � K (17)

where � is the fundamental solution of Laplace equation defined as the following function.

�(x, y) =

�
�

�

� 1
2� log |x � y| for n = 2,

1
n(n�2)�(n)|x�y|n�2 for n � 3.

(18)

The equation (18) is fundamental solution of Laplace’s equation, and for fixed y � Rn, it is a harmonic
function in Rn \ {y}. And the second derivative of (18) satisfies the following.

��(x, y) = �0(x � y). (19)

The unknown density function � defined on the boundary can be determined by fitting the boundary
data, such that it satisfies the limit of integral DLP for u(x) when x approaching �t. But the boundary
integral in equation (17) is only defined in interior of domain, and to fit the density function, the limit
of DLP when it is approaching the boundary is applied as in the Theorem. (1) from [4].

Theorem 1: For �U of class C2, the double-layer potential with continuous density � can be contin-
uously extended from U to Ū and from Ū c to U c with limiting values

lim
h�0+

�

�U
�(y(s))

��(x ± hnx, y(s))

�ny
ds =

�

�U
�(y(s))

��(x, y(s))

�ny
ds � 1

2
�(x) (20)

and the integral exists as an improper integral.
Therefore, according to problem (8), the density � can be computed by solving the folowing boundary

integral equation for x � �t.

f(x) =

�

�t

�(y)
��(x � y)

�ny
dy +

1

2
�(x) + A�(x � z0) (21)

where f(x) is just a boundary condition written in (8),

f(x) =

�
0 , for x � ��

1 , for x � �K.
(22)
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B. Changing the Integral form

Consider the two following integrals.
�

��
�(y(s))�(x, y(s))dy(s)

�

���

�(y(s))�(x, y(s))dy(s)

Suppose that the arch length of a closed curve �� � Rn is 1, and let y(s�) : s � [0, 1] � ��� be
a parameterization on boundary ��� , then for the continuous function f of our surface integral can be
calculated as the following.

�

���

f(y)dy =

� 1

0
f(y(s�))|y�(s�)|ds� (23)

We consider the integral of function that lies on �� as an integral of potential.
�

��
�(y)�(x, y)dy =

�

��
�(y)�(x, y)dy

=

�

��{�=0}

�(y�)�(x, y�)dy�

=

� �

��
�(�)

�

���

�(y � (s�))�(x, y � (s�))dy � (s�)d�

=

� �

��
�(�)

� b

a
�(y � (s�))�(x, y � (s�))|y �� (s�)|ds�d�

=

� �

��
�(�)

�

{y=d�1(�)}
�(y � (s�))�(x, y � (s�))|y �� (s�)|ds�d�

=

�

Rn

�(d(z))�(z�)�(x, z�)|y �� (s�)||�d(z)|dz (by using Coarea formula),

=

�

Rn

�(d(z))�(z�)�(x, z�)|y �� (s�)|dz

(24)

where y�(s�) = y(s�)��d(y(s�))d(y(s�)) is a projected point of y(s�) � ��� to the point y�(s�) � ��.
Since we use the signed distance function which |�d(y)| = 1, an outer normal vector of �� can be
calculated as ny� = ��d(y). Therefore, the formula for |y �� (s�)| can be derived as the following
formulation.

y � (s�) = y(s�) � d(y(s�))�d(y(s�))

= y(s�) + �ny�(s�)

since �s� = �(y(s�)) = �(s�)n(s�),

y � (s�) = y(s�) + �
�s�

�(s�)
(25)

�y �� (s�) = y(s�) + �
� ��(s�)�(s�) � ��(s�)�s�

�(s�)2
(26)

�y �� (s�) = y�(s�) + ��(s�)�(s�) (27)
�y �� (s�) = (1 + ��(s�))�(s�) using �s� = �(s�)n(s�) and ns� = ��(s�)�(s�) (28)

�|y �� (s�)| = 1 + ���, if we choose � < min
���

1

��(x)
(29)

Therefore, after using the chain rule, averaging the parameter with delta Dirac function, and applying
the Coarea formula, now we obtain another form of DLP boundary integral (21) for a solution of Laplace
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Dirichlet boundary problem, that can be rewritten as the following statements.
Double-layer potential

1 Find density function �, such that for x � �� it is satisfied

f(x) =

�

Rn

�(y�)
��(x, y�)

�ny� ��(y)J(y)dy � 1

2
�(x) (30)

where y� is a projection point of y � Rn with a formula y� = y � d(y)�d(y), and J(y) is a
Jacobian equals to |y �� (s�)| for some parameterization s� we explained before.

2 Construct solution u(x) for x � � as

u(x) =

�

Rn

�(y�)
��(x, y�)

�ny� ��(y)J(y)dy (31)

Figure 3: The closest points correspond to the circle with radius 0.6. In this mesh example, the spacing mesh is
equidistant set as �x = 0.04.

C. Algorithm of Implicit BIM for Hale-Shaw Problem

Given an initial domain �0, the following steps are the procedure to compute the DLP in the boundary
integral equation.

0 . For initial discrete time k = 0, given a boundary ��k, define a level set function F k(x) : Rn � R
such that ��0 := {x; F k(x) = 0}.

1 . Initialization of distance function.
2 . Using Fast Sweeping algorithm to compute signed distance function d��k(x) as explained in [5].
3 . Find the density � to fit the boundary condition, by solving a linear system from (30).
4 . Use � from step 3 to find the solution uk(x) by the formula (31). Also as the zero level set of

F k the boundary ��k := {x : F k(x) = 0}.
5 . Compute the extended of normal velocity V̄ , in the tubular neighborhood ��. According to the

DLP form �u/�nx defined in Vn has the following continuous form :

�u

�nx
=

�

��
�(y)

�2�(x, y)

�ny�nx
dy +

mt�

1

aj
��(x�, zj)

�nx
(32)

6 . Update a new level set function for the next time step F (k + 1)(x) by computing

F k+1(x) = F k(x) � V̄ (x)|�F k(x)|�t, (33)

where F k(x) = d��k(x).
7 . Repeat from the step-1 as a required time steps.

The algorithm for the procedure above described as follows.
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Algorithm 1 Implicit BIM algorithm for Hele-shaw Problem

1: Initialize: k = 0, ��k, F k(x) : Rn � R s.t ��0 := {x : F k(x) = 0}
2: while k<maximum required time step do
3: Compute d��k(x) � by Fast sweeping algorithm
4: Find � to fit the boundary condition � solving a linear system (30)
5: Find the pair solution (uk, �k) of (8)
6: Compute V̄ in the tubular neighborhood �� = ��k

�

7: Update F k+1(x)
8: k=k+1

IV. DISCRETIZATION

This section explains the discretization scheme for the integral equation on (30). The integral formula
becomes easy to compute numerically as a Riemann integral. Therefore, for numeric computation, the
Trapezoidal scheme is chosen for integral discretization.

A. Trapezoidal Integral

From (30) and (31), the main problem in the computation is finding a density function � that fit
to the boundary condition, then use it to construct solution u(x). Remark the jacobian J(y) for y �
��� on level set d(y) = �, defined as J(y) = 1 + ��(y). In the level set representation by signed
distance function, a curvature � = ��d(y). Thus the Jacobian in term of Riemann integral computed as
J(y) = 1 � d(y)�d(y). Therefore, for every point xi in the tubular neighborhood, trapezoidal integral
discretization for the integral form in (30) will have the following form.

f(x�
i ) = hn

N�

j=1

�
�(y�

j )
��(x�

i , y
�
j )

�n�
y

J(yj)��(yj)

�
+

1

2
�(x�

i ) (34)

In order to solve (34) for �, the linear system (A + 1
2I)�̄ = f̄ occurs, where

Ai,j =
��(x�

i , y
�
j )

�n�
y

J(yj)��(yj), (35)

�̄ = (�(y�
1 , �(y�

2), · · · , �(y�
N )))T , and f̄ = (f(x�

1), f(x�
2), · · · , f(x�

N )) for i = 1, 2, . . . , N .

In order to compute ��(x�
i ,y�

j )

�n�
y

= �� · n�
y , the normal vector n�

y equals to � �d
|�d| if the signed

distance function d is used as a level set function. Since |�d| = 1 on the boundary, then ��(x�
i ,y�

j )

�n�
y

=

��y�(x�
i , y

�
j )·�d(y�

j ). However, �d is defined only on the grid points. We can use bi-linear interpolation
to approach the value of �d defined on the boundary. Finally the double layer potential u(x) for x � �
can be obtained by using the following discretization.

u(x) = hn
j=N�

j=1

�(y�
j )

��(x, y�
j )

�n�
y

J(y�
j )��(y

�
j ). (36)

However, the singularity appears in computing ��(x,y�
j )

�n�
y

on the boundary, when yj� is close enough to
x�

i . The regularization is required to avoid unsolvable linear system.
The regularization of ��(x,y�

j )

�n�
y

have done by relocating x and y in a sphere �B(0, R) since they
are close each other. Fix for y = (0, R) and any point of x lies on �B(0, R) has a polar coordinate
x = (R cos �, R sin �). On �B, normal derivative of � is rewritten as

Formula for ��(x,y)
�ny

��(x, y)

�ny
=

�
1
4� �(y) ,for |x � y| < �
��(x,y)

�ny
,Otherwise.

(37)
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B. For Multi-connected Domain

Figure 4: The example of multi-connected domain.

The DLP integral for the solution of u(x) has been expressed as the integral over T��R2. Therefore, to
fit the boundary data the following discretization we do to compute numerically the density function �. Let
N be a number of points lie in the tubular neighborhood. For each point xi in the tubular neighbourhood
T� with x�

i is its projection on the boundary, the latest of integral form can be discretized to become:

f(x�
i ) = hn

N�

j=1

�
�(y�

j )
��(x�

i , y
�
j )

�n�
y

J(yj)��(yj)

�
+

1

2
�(x�

i ) + A�(x�
i , zk) (38)

for any z0 � K . Also, put the ekstra condition for the density such that the linear system according to
(38) has non-trivial solution. And from the discretization (38), we have the linear system Av̄ = F̄ to
solve, where B, v̄, F̄ have the form as folows.

B =

�
(C + 1

2I) �(x�
i � z0)

1 0

�
, where Ci,j = h2 ��(x�

i , y
�
i )

�n�
y

J(yj)��(yj) (39)

v̄ =
�
�(x�

1) . . . �(x�
N ) A

�t (40)

F̄ =
�
f(x�

1) . . . f(x�
N ) 0

�t (41)

C. Extention of Normal Velocity

To compute the normal velocity Vn as defined before, we need to derive the formula for a normal
derivative of solution u(x) from the form of integral DLP.

�u

�nx
(x) = �xu · nx (42)

=

�

��t

�(y)
�2�(x � y)

�ny�nx
dy + A

��(x � z0)

�nx
(43)

The term �2�
�ny�nx

can be written as follows.

�2�

�ny�nx
=

�

�ny

�
��(x � y)

�nx

�
(44)

=
�

�nx

�
� 1

2�

((x � y) · ny)

|x � y|2

�
(45)

=
1

2�

�
2
((x � y) · ny)((x � y) · nx)

|x � y|4 � (ny · nx)

|x � y|2

�
(46)
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Therefore, for x � �t normal velocity V = |�u/�nx|, where

�u

�nx
=

1

2�

�

�t

�(y)

�
2
((x � y) · ny)((x � y) · nx)

|x � y|4 � (nx · ny)

|x � y|2

�
dy

+
A

2�

((x � z0) · nx)

|x � z0|2
.

(47)

For particular case i.e annulus domain, let we denote two additional terms at (47) as T1 and T2 are
the following.

T1 =

�

�(�K)
�(y)

�2�

�nx�ny
dy

T2 = A�(x � z0), for some z0 � K

Then we observe T1 according to the constant boundary data as given in (22).

T1 =

�

��
�(y)

�2�

�nx�ny
dy +

�

�K
�(y)

�2�

�nx�ny
dy

= �1

�

��

�2�

�nx�ny
dy + �2

�

��

�2�

�nx�ny
dy , (since � is constant from constant boundary data,)

= �1

�

�
1�(

��

�nx
) + �(

��

�nx
) · 0)dx + �2

�

K
1�(

��

�nx
) + �(

��

�nx
) · 0)dx( by integration by part)

= 0
(48)

Thus, for annulus domain with given constant boundary data,

�u

�nx
= T2. (49)

However in general, the integral (47) appears as hypersingular integral, and in the problem (8), ��t �
�t := {x|d(x, t) = 0} moves with normal velocity Vn, with fixed boundary �K. Instead of computing
the normal velocity on the ��t, we moves a curve by finding the extension of normal velocity in T� and
update the level set function around T�. And we notice that the extension only requires to be continous.
Denote the extension of Vn to be �Vn(x, �) such that it is defined in

�
T� � R2 � (0, �)

�
. Then, we update

the new level set only in the neighbourhood of ��t by using the following formula. For x � T� \�t, the
formula for �Vn = | ��u/�nx| is:

��u

�nx
(x) =

1

2�

�

�t

�(y)

�
2
((x � y) · �d(y))((x � y) · �d(x))

|x � y|4 � (�d(y) · �d(x))

|x � y|2

�
dy

� A

2�

((x � z0) · �d(x))

|x � z0|2
and by Coarea formula,

=
1

2�

�

T�

�(z�)

�
2
((x � z�) · �d(z�))((x � z�) · �d(x))

|x � z�|4 � (�d(z�) · �d(x))

|x � z�|2

�
J(z)��(z)dz

� A

2�

((x � z0) · �d(x))

|x � z0|2
(50)

To compute the last equation, we use simple Quadrature rules to compute numerical integration. The
discrete from of the integral is as follows.

��u

�nx
(xi) � 1

2�

j=N�

j=1

h2�(y�
j )

�
2
((xi � y�

j ) · �d(y�
j ))((xi � y�

j ) · �d(xi))

|xi � y�
j |4 �

(�d(y�
j ) · �d(xi))

|xi � y�
i |

�
J(yj)��(yj)

� A

2�

(xi � z0) · �d(xi)

|xi � z0|2
(51)
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Figure 5: figure
Collocating hypersingular integral in 2D

Since (50) is hypersingular integral, we still need to regularize the value when x � (T� \ �t) is very
close to some y � �t. The regularization for the hypersingular integral has been proposed in [8] by using
the method named collocation to interpolate the value of �.

D. Regularization for the extended Velocity Formula

The formula of normal velocity include a hypersingular integral on the boundary ��t,and we agreed
that to extend the velocity at the point passing through the boundary by defining a continuous extension,
i.e Ṽn. However, the integral term in the formula still requires a regularization for x close to boundary.
One of basic approximations is collocation. Remind that in calculating the integral of double layer
potential, collocation/re-coordinating is applied to regularize the occurred term ��(x,y)

�ny
when x close to

y � �t. We describe 2D geometry for the idea of regularization the second derivative of boundary integral.

A small edge of the boundary is projected to the X-axis such that we can consider this part as a flat
boundary segment consisting the interval [�1, 1], where by limiting value of � � 0 ...

To approximate the boundary and the function � lies on the boundary, we use linear interpolation with
linear shape functions are follows.

�1(s) = 1 � s

�2(s) = s
(52)

The linear interpolation on S0 and S1 for the boundary and the function � respectively are defined as :
For �0

�0(s) = y�1�1(s) + y0�2(s) = (�1 + s, 0)

�(�0(s)) = �(y�1)�1(s) + �(y0)�2(s) = �(y�1) + s(�(y0) � �(y�1))

|x � y|2 = (�1 + s)2 + �2
(53)

for �1

�1(s) = y0�1(s) + y1�2(s) = (s, 0)

�(�1(s)) = �(y0)�1(s) + �(y1)�2(s) = �(y0) + s(�(y1) � �(y0))

|x � y|2 = s2 + �2
(54)
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The computation of the limit integral can be shown as follow.

lim
��0+

�

S0�S1

�(y)
�2�(x, y)

�n�
xny

dy = lim
��0+

1

2�

�

S0�S1

�(y)

�
nx · ny

|x � y|2 � 2
(nx · (x � y))(ny · (x � y))

|x � y|4

�
dy

= lim
��0+

1

2�

�

S0

�(y)

�
nx · ny

|x � y|2 � 2
(nx · (x � y))(ny · (x � y))

|x � y|4

�
dy

+ lim
��0+

1

2�

�

S1

�(y)

�
nx · ny

|x � y|2 � 2
(nx · (x � y))(ny · (x � y))

|x � y|4

�
dy

= lim
��0+

1

2�

� 1

0
�(y�1) + s(�(y0) � �(y�1))

�
1

(�1 + s)2 + �2
� 2�2

((�1 + s)2 + �2)2

�
ds

+ lim
��0+

1

2�

� 1

0
�(y0) + s(�(y1) � �(y0))

�
1

s2 + �2
� 2�2

(s2 + �2)2

�
ds

= lim
��0+

1

2�

�
�(y�1)

�1

1 + �2
+ ((�(y0) � �(y�1)) � (�(y1) � �(y0))) log(�2)/2 + �(y0)

�1

1 + �2

�

(55)

By using this approximation, the integral is finite if only if the term consist log(�2)/2 canceled out,
and this happens only if

�(y0) � �(y�1) = �(y1) � �(y0)

which we conclude that a function � must be in C1. Thus, from the latest computation we have :

lim
��0+

�

S0�S1

�(y)
�2�(x, y)

�n�
xny

dy = � 1

2�
(�(y�1) + �(y0)) (56)

V. RESULTS AND DISCUSSION

In the discretization of singular integral as we have in DLP boundary integral, where the integral over
the surface is transformed into the integral defined in Rn, it is important to approximate the delta Dirac
function. We use one of two techniques that was proposed by [2], i.e variable regularization parameter.
In this computation, we use the following averaging kernel for delta Dirac function in the formula.

�
��(x) = 1

2� (1 + cos(�x
� ))

0 otherwise
(57)

The convergence of � as the grid increases was experimented by the work of [5] inspired by the result
of [2] about the convergence of surface integrals in the Cartesian grid. So we choose the same tubular
neighborhood size around the boundary as in [5],

� = 2|�d|1h (58)

where h is a mesh size of equidistant discretization in the Cartesian grid. Figure. 6 shows the numerical
solution of Hele-Shaw problem defined in (8). The algorithm in Section III-C is applied to the simply
connected domain with only one connected source K � �t and to the multi-connected ellipse with
disconnected source K. Since finding the � requires to solve the integral equation that contains the
singular integral and the regularization causes the ill-conditioned matrix during the computation (non-
invertible coefficient matrix in (34)), the singular decomposition value technique is used to obtain the
solution. The matrix condition number can be seen in Figure. (7).

Figure. (7) shows ill-conditioned matrix occurs very large during computation to find the coefficient
�. The coeficient matrix of linear system (34) is not invertible, such that problem (34) in this work is
solved by using singular decomposition value (SDV). Surprisingly, the larger matrix condition value does
not depend on the mesh size N . The condition matrix of mesh size N = 960 appears to be better that
N = 600.
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(a) (b)

Figure 6: Performs the evolution of the domain in the numerical solution of Hele-shaw problem by using implicit
BIM. (a) shows the evolution of the boundary with the given initial domain �0 = B(0, r1) as a circle with only
one the injection source K = B(0, r2) for r1 > r2 > 0. B(0, r1) \ B(0, r2) is a simple-connected domain. Figure
(b) shows the evolution of the domain as multi-connected ellipse with two disconnected injecting area inside of it.

Figure 7: Matrix condition during the domain evolution.

VI. CONCLUSION

This work implements the method names implicit boundary integral method to approximate the Lapla-
cian in two dimension that included in the Hele-Shaw problem, and naively compute the normal velocity
to update the free boundary. The algorithm based on the solution of the boundary integral equation is not
only for the simply-connected domain but also for the domain that has a disconnected sources. Since in
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this method the boundary is described as a level set function and is also grid independent, this method
has a benefit for such a free boundary problem as considered in this work. The improvement is also
necessary to increase the accuracy and the efficiency in the computation technique, specially in handling
the ill-conditioned matrix that exist during computation.
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