Penentuan Prioritas Perbaikan Jalan dengan Metode Analytic Hierarchy Process (AHP) dan COPRAS-G di Kota Tangerang

Rifaldi Rizqi Pratama 1, Mahmud Imrona, M.T. 2, Annisa Aditsania, M.Si. 3

1 School of Computing, Telkom University
Jl. Telekomunikasi No. 1, Ters. Buah Batu Bandung 40257 Indonesia
rifaldi.rizqi19@gmail.com
2 mahmudimrona@telkomuniversity.ac.id
3 aaditsania@telkomuniversity.ac.id

Abstract
Along with the increasing age of the road, the road must have been damaged. Some roads have been built lack of maintenance and repair. Improvements made less targeted. One of the problems is that the allocated budget does not meet the needs. To solve road maintenance problem, it takes a system that determines the order of road maintenance, thus optimizing the limited budget. To determine the road maintenance problem, the method used is Analytic Hierarchy Process (AHP) and COPRAS-G. This research was conducted in Tangerang city. From the research results obtained weight of importance of each criterion that, first is the land use with weight 0.51, second is the road classification with weight 0.26, third is road damage condition with weight 0.12, fourth is vehicles volume with weight 0.06 and last is vehicle speed with weight 0.03 with a CR value is 0.035 indicates that the weighted importance rating among the criteria is consistent. Thus, the priority order of the road is, first is road code J53 is Jalan Manis 2 KM 1 with Ni 100%, second is road code J55 is Jalan Kasir 2 KM 1 with Ni 90.96% and third is road code J67-5 Jalan Imam Bonjol KM 5 with Ni 86.5% and so on.

Keywords: priority, road maintenance, analytic hierarchy process, AHP, COPRAS-G

Abstrak
Seiring dengan bertambahnya usia, jalan pasti mengalami kerusakan. Sebagian jalan yang telah dibanga kurang mendapat perawatan dan perbaikan. Perbaikan yang dilakukan biasanya kurang tepat sasaran. Salah satu masalahnya yaitu anggaran yang dialokasikan kurang memenuhi kebutuhan. Untuk mengatasi masalah perbaikan jalan, dibutuhkan sistem yang menentukan urutan prioritas jalan yang diperbaiki terlebih dahulu, sehingga mengoptimalkan anggaran yang terbatas. Untuk menentukan urutan prioritas perbaikan jalan tersebut, metode yang digunakan adalah Analytic Hierarchy Process (AHP) dan COPRAS-G. Penelitian ini dilakukan di kota Tangerang. Dari hasil penelitian diperoleh bobot kepentingan setiap kriteria, yaitu pertama adalah tata guna lahan dengan bobot 0.51, kedua adalah klasifikasi jalan dengan bobot 0.26, ketiga adalah kondisi kerusakan jalan dengan bobot 0.12, keempat adalah volume kendaraan dengan bobot 0.06 dan terakhir adalah kecepatan kendaraan dengan bobot 0.03, dengan nilai CR 0.035 menunjukkan bahwa penilaian bobot kepentingan antar kriteria tersebut bersifat konsisten. Jadi, urutan prioritas ruas jalan yang diperoleh yaitu, pertama kode ruas jalan J53 adalah Jalan Manis 2 KM 1 dengan tingkat kepentingan Ni sebesar 100%, kedua yaitu kode ruas jalan J55 adalah Jalan Kasir 2 KM 1 dengan Ni sebesar 90.96% dan ketiga yaitu pada kode ruas jalan J67-5 adalah Jalan Imam Bonjol KM 5 dengan Ni sebesar 86.5% dan seterusnya.

Kata Kunci: prioritas, perbaikan jalan, analytic hierarchy process, AHP, COPRAS-G

Received on Feb 2018. Accepted on March 2018
I. PENDAHULUAN

Jalan merupakan satu dari beberapa sarana transportasi darat yang penting dalam menghubungkan tempat-tempat seperti pemukiman, lahan pertanian, lokasi wisata, kawasan industri, serta digunakan juga sebagai sarana pendistribusian barang dan jasa dalam rangka memperluas perekonomian negara. Seiring dengan bertambahnya usia, jalan pasti mengalami kerusakan. Dinas Pekerjaan Umum Bina Marga adalah departemen yang bertangung jawab dalam pembangunan maupun pemeliharaan jalan di seluruh wilayah Indonesia. Namun, sebagian jalan yang telah dibangun kurang mendapat perawatan dan perbaikan. Perbaikan yang dilakukan biasanya kurang tepat sasaran. Salah satu masalahnya yaitu anggaran yang dialokasikan kurang memenuhi kebutuhan, anggaran untuk pemeliharaan jalan yang menurun sedangkan harga bahan bangunan yang terus meningkat. Oleh karena itu, untuk mengatasi masalah perbaikan jalan, dibutuhkan suatu sistem yang menentukan prioritas jalan mana yang akan diperbaiki terlebih dahulu sehingga mengoptimalkan anggaran yang terbatas. Pada penelitian ini kota Tangerang dipilih sebagai kota yang di observasi.

II. STUDI TERKAIT

A. Kriteria Penelitian

1. Jalan

Pengertian jalan menurut UU No.38 tahun 2004 adalah prasarana transportasi darat yang meliputi segala bagian jalan, termasuk bangunan pelengkap dan perlengkapanannya yang diperuntungkan bagi lalu lintas, yang berada pada permukaan tanah, di atas permukaan tanah, di bawah permukaan tanah dan/ atau air, serta di atas permukaan air, kecuali jalan kereta api, jalan lori, dan jalan kabel [3][4]. Jalan sebagaimana dimaksud dikelompokan menurut sistem, fungsi, status, dan kelas.

1) Pengelompokan jalan menurut sistem
 a. Sistem jaringan jalan primer
 b. Sistem jaringan jalan sekunder

2) Pengelompokan jalan menurut fungsi
 a. Jalan Arteri
 b. Jalan Kolektor
 c. Jalan Lokal
 d. Jalan Lingkungan

3) Pengelompokan jalan menurut status
 a. Jalan Nasional
 b. Jalan Provinsi
 c. Jalan Kabupaten
 d. Jalan Kota
 e. Jalan Desa
 4) Pengelompokan jalan menurut kelas
 Berikut adalah pengelompokan jalan menurut kelas jalan terdiri atas [5]:
 a. Jalan kelas I
 b. Jalan kelas II
 c. Jalan kelas III
 d. Jalan kelas khusus
2. **Kondisi Jalan**

Kondisi jalan berdasarkan standar Dinas Bina Marga dapat dibagi menjadi 4 kondisi, yaitu:

1) Jalan dalam kondisi baik adalah jalan dengan permukaan yang benar-benar rata, tidak ada gelombang dan tidak ada kerusakan permukaan jalan.
2) Jalan dalam kondisi sedang adalah jalan dengan kerataan permukaan perkerasan sedang, tidak ada gelombang dan tidak ada kerusakan.
3) Jalan dalam kondisi rusak ringan adalah jalan dengan permukaan sudah mulai bergelombang, mulai ada kerusakan permukaan dan penambalan.
4) Jalan dalam kondisi rusak berat adalah jalan dengan permukaan perkerasan sudah banyak kerusakan seperti bergelombang, retak-retak buaya dan terkelupas yang cukup besar, disertai kerusakan pondasi seperti ambles, dsb.

<table>
<thead>
<tr>
<th>NO.</th>
<th>KONDISI</th>
<th>KERUSAKAN (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>BAIK</td>
<td>0-40</td>
</tr>
<tr>
<td>2.</td>
<td>SEDANG</td>
<td>40-200</td>
</tr>
<tr>
<td>3.</td>
<td>RUSAK RINGAN</td>
<td>200-600</td>
</tr>
<tr>
<td>4.</td>
<td>RUSAK BERAT</td>
<td>>600</td>
</tr>
</tbody>
</table>

Tabel 1 merupakan nilai kondisi kerusakan jalan berdasarkan standar dari Dinas Bina Marga. Penilaian kondisi ini dilakukan di setiap ruas jalan dengan menghitung luas kerusakan untuk ditentukan kondisi kerusakannya.

3. **Volume Lalu Lintas**

Volume lalu lintas adalah banyaknya kendaraan yang melewati suatu titik atau garis tertentu pada suatu penampang melintang jalan. Menurut Sukirman, volume lalu lintas mempunyai jumlah kendaraan yang melintasi satu titik pengamatan dalam satu satuan waktu [6].

4. **Kecepatan Kendaraan**

Pada penelitian ini kecepatan kendaraan diperoleh dari kecepatan rencana berdasarkan fungsional jalan. Kecepatan rencana adalah kecepatan maksimum yang dipilih sebagai dasar perencanaan geoteknik jalan yang memungkinkan kendaraan – kendaraan bergerak secara aman dan nyaman dalam kondisi suasana cerah, arus lalu lintas kecil dan pengaruh hambatan samping jalan tidak berarti [7].

<table>
<thead>
<tr>
<th>Fungsi Jalan</th>
<th>Kecepatan Rencana (km/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arteri Primer</td>
<td>50 – 100</td>
</tr>
<tr>
<td>Kolektor Primer</td>
<td>40 – 80</td>
</tr>
<tr>
<td>Arteri Sekunder</td>
<td>50 – 80</td>
</tr>
<tr>
<td>Kolektor Sekunder</td>
<td>30 – 50</td>
</tr>
<tr>
<td>Lokal Sekunder</td>
<td>30 – 50</td>
</tr>
</tbody>
</table>

Tabel 2 Kecepatan rencana sesuai klasifikasi jalan di kawasan perkotaan[8]

5. **Tata guna Lahan**

Penatausahaan lahan adalah pemanfaatan dan penataan lahan yang dilakukan sesuai dengan kondisi alam untuk kepentingan masyarakat secara adil [9]. Pada penelitian ini tata guna lahan diperoleh dari rencana tata ruang wilayah kota Tangerang.
B. Metode yang Digunakan
1. Analytic Hierarchy Process (AHP)

AHP merupakan suatu model pendukung keputusan yang dikembangkan oleh Thomas L. Saaty. Model pendukung keputusan ini akan menguraikan masalah multi faktor atau multi kriteria yang kompleks menjadi suatu hierarki. Hirarki didefinisikan sebagai suatu representasi dari sebuah permasalahan yang kompleks dalam suatu struktur multi level dimana level pertama adalah tujuan, yang diikuti level faktor, kriteria, sub kriteria, dan seterusnya ke bawah hingga level terakhir dari alternatif [10]. Dengan hirarki, suatu masalah yang kompleks dapat diuraikan ke dalam kelompok-kelompoknya yang kemudian diatur menjadi suatu bentuk hirarki sehingga permasalahan akan tampak lebih terstruktur dan sistematis. Dalam menyelesaikan permasalahan dengan AHP ada beberapa prinsip yang harus dipahami [11], diantaranya adalah:

1) Membuat Hirarki
2) Penilaian criteria dan alternatif
3) Synthesis of priority (menentukan prioritas)
4) Logical Consistency (konsistensi logis)

Langkah-langkah AHP
Pada dasarnya, prosedur atau langkah-langkah dalam metode AHP meliputi:
1) Mendefinisikan masalah dan menentukan solusi yang diinginkan, lalu menyusun hirarki dari permasalahan yang dihadapi.

![Struktur Hirarki AHP](image)

Gambar 1 Struktur Hirarki AHP [12]

Gambar 1 menunjukkan struktur hirarki AHP, pada level teratas yaitu tujuan dari analisis. Untuk level yang berikutnya adalah multi kriteria yang terdiri dari beberapa faktor. Pada level ini juga dapat menambahkan sub-kriteria lainnya. Pada tingkat yang terakhir adalah pilihan alternatif.

2) Penilaian criteria dan alternatif
 a. Langkah pertama dalam menentukan prioritas elemen adalah membuat perbandingan pasangan, yaitu membandingkan elemen secara berpasangan sesuai dengan kriteria yang diberikan. Misalkan kriteria X memiliki beberapa elemen di bawahnya, yaitu A1, A2, ..., An.

 ![Tabel 3 Matrik Perbandingan Berpasangan](image)

 X adalah kriteria yang digunakan sebagai dasar perbandingan dan A1, A2, ..., An adalah elemen-elemen pada satu tingkat di bawah X. Setiap elemen yang ada dikolom sebelah kiri selalu dibandingkan dengan elemen-elemen yang ada di puncak.

<table>
<thead>
<tr>
<th>Intensitas Kepentingan</th>
<th>Definisi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kedua elemen sama pentingnya (Equal importance)</td>
</tr>
<tr>
<td>3</td>
<td>Elemen yang satu sedikit lebih penting daripada elemen yang lainnya (Weak importance of one over another)</td>
</tr>
<tr>
<td>5</td>
<td>Elemen yang satu lebih penting daripada yang lainnya (Essential or strong importance)</td>
</tr>
<tr>
<td>7</td>
<td>Satu elemen jelas lebih mutlak penting daripada elemen lainnya (Demonstrated importance)</td>
</tr>
<tr>
<td>9</td>
<td>Satu elemen mutlak penting daripada elemen lainnya (Extreme importance)</td>
</tr>
<tr>
<td>2, 4, 6, 8</td>
<td>Nilai-nilai antara dua nilai pertimbangan-pertimbangan yang berdekatan (Intermediate values between the two adjacent judgments).</td>
</tr>
<tr>
<td>Kebalikan/Resiprokali</td>
<td>Jika aktifitas i mendapat satu angka dibandingkan dengan aktifitas j, maka j memiliki nilai kebalikannya dibandingkan dengan i atau (a_{ij} = 1/a_{ji})</td>
</tr>
</tbody>
</table>

3) Menentukan prioritas
 Hal-hal yang dilakukan dalam langkah ini adalah:
 a. Kuadratkan matriks hasil perbandingan berpasangan.
 b. Hitung jumlah nilai dari setiap baris, kemudian lakukan normalisasi setiap baris yang telah dijumlahkan.

4) Mengukur konsistensi
 Dalam pembuatan keputusan, penting untuk mengetahui seberapa baik konsistensi yang ada karena kita tidak menginginkan keputusan berdasarkan pertimbangan dengan konsistensi yang rendah. Hal-hal yang dilakukan dalam langkah ini adalah:
 a. Menjumlahkan setiap kolom pada matriks perbandingan berasakan.
 b. Mengkalikan hasil penjumlahan dengan hasil prioritas yang bersangkutan.
 c. Menjumlahkan hasil perkalian tersebut untuk mendapatkan nilai \(\lambda_{maks} \)

5) Menghitung Consistency Index (CI) dengan persamaan:

 \[
 CI = \frac{\left(\lambda_{maks} - n \right)}{n - 1} \tag{1}
 \]

 Dengan n adalah banyaknya elemen.

6) Menghitung Consistency Ratio (CR) dengan persamaan:

 \[
 CR = \frac{CI}{RI} \tag{2}
 \]

 Dengan:
 CR = Consistency Ratio CI = Consistency Index RI = Indeks Random Consistency

<table>
<thead>
<tr>
<th>Ukuran Matriks</th>
<th>1, 2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nilai RI</td>
<td>0,00</td>
<td>0,58</td>
<td>0,90</td>
<td>1,12</td>
<td>1,24</td>
<td>1,32</td>
<td>1,41</td>
<td>1,45</td>
<td>1,49</td>
</tr>
</tbody>
</table>
2. COPRAS-G

COPRAS-G adalah metode untuk menilai alternatif dengan beberapa kriteria yang dinyatakan dalam interval. Berikut ini adalah procedur dalam penerapan metode COPRAS-G \[13\], yaitu:

1) Memilih kriteria yang paling penting, serta menggambarkan alternatifnya.
2) Membangun matriks pengambilan keputusan \(X\):

\[
X = \begin{bmatrix}
X_{11} & X_{12} & \cdots & X_{1m} \\
X_{21} & X_{22} & \cdots & X_{2m} \\
\vdots & \vdots & \ddots & \vdots \\
X_{n1} & X_{n2} & \cdots & X_{nm}
\end{bmatrix}
\]

3) Dimana \(X_{ij}\) ditentukan oleh \(X_{ij}\) (nilai terkecil, batas bawah) dan \(\bar{X}_{ij}\) (nilai terbesar, batas atas).
4) Normalisasi matriks pengambilan keputusan \(X\):

\[
\begin{align*}
\bar{X}_{ij} &= \frac{X_{ij}}{2} \left(\sum_{j=1}^{m} \frac{X_{ij}}{X_{ij}} + \sum_{i=1}^{n} \frac{\bar{X}_{ij}}{\bar{X}_{ij}} \right) = \frac{2X_{ij}}{\sum_{i=1}^{n} X_{ij} + \sum_{j=1}^{m} \bar{X}_{ij}}; \\
\bar{X}_{ij} &= \frac{\bar{X}_{ij}}{2} \left(\sum_{i=1}^{n} \frac{X_{ij}}{X_{ij}} + \sum_{j=1}^{m} \frac{\bar{X}_{ij}}{\bar{X}_{ij}} \right) = \frac{2\bar{X}_{ij}}{\sum_{i=1}^{n} X_{ij} + \sum_{j=1}^{m} \bar{X}_{ij}};
\end{align*}
\]

Dalam persamaan (4) \(X_{ij}\) adalah nilai terendah dari kriteria \(j\) di alternatif \(i\) dari solusi. \(\bar{X}_{ij}\) adalah nilai tertinggi dari kriteria \(j\) di alternatif \(i\) dari solusi. \(n\) adalah jumlah kriteria dan \(m\) adalah jumlah alternatif yang dibandingkan. Kemudian, matriks pengambilan keputusan dinormalisasi.

\[
\bar{X} = \begin{bmatrix}
\bar{X}_{11} & \bar{X}_{12} & \cdots & \bar{X}_{1m} \\
\bar{X}_{21} & \bar{X}_{22} & \cdots & \bar{X}_{2m} \\
\vdots & \vdots & \ddots & \vdots \\
\bar{X}_{n1} & \bar{X}_{n2} & \cdots & \bar{X}_{nm}
\end{bmatrix}
\]

5) Menghitung bobot matriks pengambilan keputusan \(X\). Nilai bobot normalisasi \(\bar{X}_{ij}\) dihitung dengan cara:

\[
\bar{X}_{ij} = \bar{X}_{ij} \times q_j \text{ or } \bar{X}_{ij} = \bar{X}_{ij} \times q_j \text{ and } \bar{X}_{ij} = \bar{X}_{ij} \times q_j
\]

Dalam persamaan (6), \(q_j\) adalah bobot dari kriteria \(j\). Maka matriks pengambilan keputusan yang ternoimalisasi adalah:

\[
\bar{X} = \begin{bmatrix}
\bar{X}_{11} & \bar{X}_{12} & \cdots & \bar{X}_{1m} \\
\bar{X}_{21} & \bar{X}_{22} & \cdots & \bar{X}_{2m} \\
\vdots & \vdots & \ddots & \vdots \\
\bar{X}_{n1} & \bar{X}_{n2} & \cdots & \bar{X}_{nm}
\end{bmatrix}
\]

6) Menghitung jumlah \(P_1\) dari nilai kriteria, pilihan nilai maksimum lebih diutamakan.
\[P_i = \frac{1}{2} \sum_{j=1}^{k} (\bar{x}_{ij} + \bar{x}_{ij}) \]

7) Menghitung jumlah \(R_i \) dari nilai kriteria, pilihan nilai minimum lebih diutamakan.

\[R_i = \frac{1}{2} \sum_{j=1}^{k} (\bar{x}_{ij} + \bar{x}_{ij}); j = k, m \]

Di persamaan (10), (m-k) adalah jumlah kriteria pilihan dengan nilai minimum.

8) Menentukan nilai terkecil dari \(R_i \).

\[R_{min} = \min R_i; j = \overline{1, m} \]

9) Menghitung signifikansi relatif dari setiap alternatif \(Q_i \).

\[Q_i = P_i + \frac{\sum_{i=1}^{m} R_i}{R_i \sum_{i=1}^{m} \frac{1}{R_i}} \]

10) Menentukan kriteria yang optimal \(K \).

\[K = \max Q_i; i = \overline{1, m} \]

11) Menentukan prioritas dari alternatif.

12) Menghitung tingkat kepentingan setiap alternatif.

\[N_i = \frac{Q_i}{K} \times 100\% \]

Dimana \(Q_i \) dan \(K \) adalah signifikansi relatif yang diperoleh dari persamaan (12).

III. METODE PENELITIAN

A. Perancangan Sistem

Adapun langkah-langkah yang dilakukan untuk menentukan prioritas perbaikan jalan pada penelitian ini adalah dapat dilihat seperti pada Gambar 2.

![Gambar 2 Flowchart Sistem](image-url)

Gambar 2 menggambarkan tentang alur sistem untuk menentukan prioritas perbaikan jalan menggunakan metode AHP dan COPRAS-G. Pertama adalah menentukan kriteria yang akan digunakan dalam
menentukan urutan prioritas jalan, pada penelitian sebelumnya dipilih kriteria antara lain kondisi kerusakan, klasisifikasi jalan, tataguna lahan, volume serta kecepatan kendaraan [1]. Setelah menentukan kriteria selanjutnya adalah mengumpulkan data yang sesuai dengan kriteria yang digunakan. Setelah itu data dirubah kedalam bentuk interval untuk menyesuaikan ke dalam perhitungan COPRAS-G. Lalu membuat hirarki kriteria dan alternatif, selanjutnya menghitung bobot kriteria yang sudah ditentukan dengan metode AHP. Setelah mendapat bobot dari masing-masing kriteria selanjutnya menghitung consistency ratio (CR), jika nilai CR > 0,1 maka perhitungan harus diulang dari menentukan perbandingan berpasangan antar kriteria pada proses AHP. Jika nilai CR ≤ 0,1 maka perhitungan dianggap benar maka dapat dilanjutkan untuk menghitung bobot setiap alternatif ruas jalan dengan metode COPRAS-G. Setelah didapat bobot setiap alternatif ruas jalan selanjutnya yaitu menentukan urutan prioritas alternatif ruas jalan dengan mengurutkan dari nilai N_i terbesar.

B. Data Set
1) Data
 a. Data Ruas Jalan
 Data ruas jalan adalah data yang berisi nama ruas jalan yang akan menjadi alternatif dalam penentuan prioritas perbaikan jalan, setiap panjang ruas jalan dibagi per 1000 meter dan diberi kode untuk masing masing ruas jalan. Data tersebut diambil dari data kondisi jalan kota Tangerang tahun 2014 yang diperoleh dari Dinas Bina Marga Kota Tangerang.
 b. Data Kondisi Kerusakan Jalan
 Data kondisi kerusakan adalah data yang menunjukkan tingkat kerusakan suatu ruas jalan. Dalam data kondisi jalan kota Tangerang tahun 2014 ada 4 kondisi yang menunjukan tingkat kerusakan suatu ruas jalan, yaitu seperti pada Tabel 1
 c. Data Klasisifikasi Jalan
 Klasisifikasi jalan berdasarkan data kondisi jalan kota Tangerang tahun 2014 dibagi menjadi 2 yaitu jalan utama dan jalan koneksi. Data ruas jalan pada penelitian ini hanya mengambil jenis jalan kota, sehingga maksud dari jalan utama disini yaitu jalan kolektor dan jalan koneksi yang dimaksud disini adalah jalan lokal atau lingkungan.
 d. Data Tataguna Lahan
 Pada penelitian ini ada 5 pembagian wilayah yang diambil berdasarkan data dari rencana tata ruang wilayah kota Tangerang tahun 2012 – 2032. Wilayah tersebut adalah kawasan perdagangan dan jasa, industri, pariwisata, pemukiman, dan fasilitas penunjang bandara.
 e. Data Volume Kendaraan
 Volume kendaraan per ruas jalan diperoleh dengan survei dengan bantuan aplikasi google maps dengan melihat kondisi lalu lintas serta menghitung kendaraan yang lewat pada suatu ruas jalan pada jam sibuk dengan interval 15 menit selama 1 jam.
 f. Data Kecepatan Kendaraan
 Data kecepatan kendaraan setiap ruas jalan ditentukan seperti pada Tabel 2 tentang kecepatan rata-rata/rencana yang sudah ditetapkan oleh pemerintah.

2) Data Kuesioner
 Data kuesioner merupakan data yang diambil dari proses kuesioner terhadap responden yang terkait dengan perbaikan jalan raya. Data kuesioner ini digunakan dalam proses AHP untuk menentukan bobot setiap kriteria dengan menggunakan skala perbandingan berpasangan. Adapun hasil dari kuesioner tersebut adalah hasil perbandingan tingkat kepentingan dengan menggunakan skala Saaty seperti pada Tabel 6.

C. Menghitung Bobot Kriteria dengan Menggunakan Metode AHP
Proses selanjutnya adalah menghitung bobot setiap kriteria dengan menggunakan matriks perbandingan berpasangan dan dengan mengacu pada skala Saaty hasil kuesioner tingkat kepentingan antar kriteria. Setelah membuat matriks perbandingan berpasangan antar kriteria lalu dicari bobotnya dengan cara mengkuadratkan matriks perbandingan berpasangan lalu menjumlahkan setiap baris dan normalisasi setiap baris yang telah dijumlahkan.

D. Menghitung Consistency Ratio (CR)
Setelah mendapat bobot/nilai maka langkah selanjutnya adalah menghitung rasio konsistensi/Consistency Ratio (CR) dengan menggunakan persamaan (3). Syarat nilai CR yang memenuhi syarat adalah ≤ 0,1 jika nilai CR > 0,1 maka penilaian kriteria harus diulang.

E. Menghitung Bobot Setiap Alternatif Ruas Jalan dengan Metode COPRAS-G
Setelah nilai Consistency Ratio (CR) memenuhi syarat maka proses selanjutnya adalah menghitung bobot untuk setiap alternatif ruas jalan dengan metode COPRAS-G. Pertama-tama adalah membangun matriks pengambilan keputusan dari data setiap kriteria yang sudah dalam bentuk interval seperti persamaan (3). Setelah membuat matriks pengambilan keputusan X, tahap selanjutnya adalah menormalisasi matriks X yaitu dengan persamaan (4). Sehingga matriks pengambilan keputusan X menjadi matriks \bar{X} seperti persamaan (5). Lalu untuk menghitung bobot setiap alternatif dari matriks pengambilan keputusan yang telah dinormalisasi adalah dengan cara mengalikan matriks \bar{X} dengan bobot setiap kriteria yang telah diperoleh dengan metode AHP (q_i) sesuai dengan persamaan (6). Sehingga matriks pengambilan keputusan menjadi seperti dalam persamaan (7). Karena dalam penelitian ini semua kriteria yang digunakan adalah mencari nilai maksimum maka mencari nilai minimum (R_i) tidak perlu dilakukan, sehingga proses selanjutnya yaitu menghitung jumlah nilai maksimum (P_i) dengan menggunakan persamaan (8). Selanjutnya adalah menghitung signifikansi relatif dari setiap alternatif (Q_i) dengan persamaan (11), namun karena tidak mencari nilai R_i maka persamaan Q_i menjadi:

$$Q_i = P_i$$

Kemudian menentukan kriteria yang optimal (K) dengan persamaan (12). Setelah itu menghitung tingkat kepentingan setiap alternatif (N_i) dengan menggunakan persamaan (13).

F. Menentukan Prioritas Setiap Alternatif Ruas Jalan
Setelah menghitung tingkat kepentingan setiap alternatif (N_i) maka dapat dilakukan peringkatan yaitu dengan cara mengurutkan nilai N_i dari yang terbesar menjadi yang terkecil, semakin besar nilai N_i maka semakin tinggi tingkat prioritas dari suatu alternatif/ruas jalan. Dari pengurutan tersebut dapat diketahui urutan prioritas perbaikan jalan pada penelitian ini.
IV. HASIL DAN ANALISIS

A. Menentukan Bobot Antar Kriteria

<table>
<thead>
<tr>
<th>Kriteria A</th>
<th>Skala</th>
<th>Kriteria B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klasifikasi Jalan</td>
<td>9</td>
<td>Kondisi Kerusakan</td>
</tr>
<tr>
<td>Klasifikasi Jalan</td>
<td>8</td>
<td>Volume Kendaraan</td>
</tr>
<tr>
<td>Klasifikasi Jalan</td>
<td>7</td>
<td>Kecepatan Kendaraan</td>
</tr>
<tr>
<td>Klasifikasi Jalan</td>
<td>6</td>
<td>Tataguna Lahan</td>
</tr>
<tr>
<td>Kondisi Kerusakan</td>
<td>5</td>
<td>Volume Kendaraan</td>
</tr>
<tr>
<td>Kondisi Kerusakan</td>
<td>4</td>
<td>Kecepatan Kendaraan</td>
</tr>
<tr>
<td>Kondisi Kerusakan</td>
<td>3</td>
<td>Tataguna Lahan</td>
</tr>
<tr>
<td>Volume Kendaraan</td>
<td>2</td>
<td>Kecepatan Kendaraan</td>
</tr>
<tr>
<td>Volume Kendaraan</td>
<td>1</td>
<td>Tataguna Lahan</td>
</tr>
<tr>
<td>Kecepatan Kendaraan</td>
<td>0</td>
<td>Tataguna Lahan</td>
</tr>
</tbody>
</table>

Dari skala kepentingan antar kriteria pada Tabel 6 dapat diperoleh matriks perbandingan berpasangan dengan cara membandingkan nilai intensitas kependentan setiap kriteria dengan kriteria lainnya. Misal, membandingkan kriteria klasifikasi jalan dengan kondisi kerusakan, dari Tabel 6 dapat dilihat nilai intensitas kepentingan lebih memihak 3 poin pada klasifikasi jalan artinya klasifikasi jalan sedikit lebih penting dari kondisi kerusakan. Begitu juga dengan perbandingan klasifikasi jalan dengan volume kendaraan, dapat dilihat nilai intensitas kepentingan lebih memihak 5 poin pada klasifikasi jalan yang artinya klasifikasi jalan lebih penting dibandingkan volume kendaraan. Begitu pun dengan kriteria yang lain, semuanya dibandingkan sehingga didapat matriks perbandingan berpasangan seperti pada Tabel 7.

<table>
<thead>
<tr>
<th>Kriteria</th>
<th>Klasifikasi Jalan</th>
<th>Kondisi Kerusakan</th>
<th>Volume Kendaraan</th>
<th>Kecepatan Kendaraan</th>
<th>Tataguna Lahan</th>
<th>Bobot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klasifikasi Jalan</td>
<td>1,00</td>
<td>3,00</td>
<td>5,00</td>
<td>7,00</td>
<td>0,33</td>
<td>0,2677</td>
</tr>
<tr>
<td>Kondisi Kerusakan</td>
<td>0,33</td>
<td>1,00</td>
<td>3,00</td>
<td>5,00</td>
<td>0,20</td>
<td>0,1290</td>
</tr>
<tr>
<td>Volume Kendaraan</td>
<td>0,20</td>
<td>0,33</td>
<td>1,00</td>
<td>3,00</td>
<td>0,14</td>
<td>0,0602</td>
</tr>
<tr>
<td>Kecepatan Kendaraan</td>
<td>0,14</td>
<td>0,20</td>
<td>0,33</td>
<td>1,00</td>
<td>0,11</td>
<td>0,0311</td>
</tr>
<tr>
<td>Tataguna Lahan</td>
<td>3,00</td>
<td>5,00</td>
<td>7,00</td>
<td>9,00</td>
<td>1,00</td>
<td>0,5120</td>
</tr>
</tbody>
</table>

CI = 0,039

CR = CI/RI = 0,035
Tabel 7 menunjukkan hasil dari pengujian penentuan bobot kriteria dengan menggunakan metode AHP. Diketahui nilai perbandingan berpasangan antar kriteria diperoleh dari Tabel 6 sehingga diperoleh bobot untuk masing-masing kriteria seperti pada Tabel 7 dengan nilai CR 0,035 artinya perhitungan bobot dinilai konsisten.

B. Menentukan Bobot Setiap Alternatif Ruas Jalan

<table>
<thead>
<tr>
<th>No</th>
<th>Kode Ruas Jalan</th>
<th>Pi</th>
<th>Qi</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>J53</td>
<td>0,008589</td>
<td>0,008589</td>
<td>100,00%</td>
</tr>
<tr>
<td>2</td>
<td>J55</td>
<td>0,007813</td>
<td>0,007813</td>
<td>90,96%</td>
</tr>
<tr>
<td>3</td>
<td>J67-5</td>
<td>0,007429</td>
<td>0,007429</td>
<td>86,50%</td>
</tr>
<tr>
<td>4</td>
<td>J90-3</td>
<td>0,007377</td>
<td>0,007377</td>
<td>85,89%</td>
</tr>
<tr>
<td>5</td>
<td>J92-3</td>
<td>0,007336</td>
<td>0,007336</td>
<td>85,41%</td>
</tr>
<tr>
<td>6</td>
<td>J89-2</td>
<td>0,007292</td>
<td>0,007292</td>
<td>84,91%</td>
</tr>
<tr>
<td>7</td>
<td>J38-3</td>
<td>0,007088</td>
<td>0,007088</td>
<td>82,53%</td>
</tr>
<tr>
<td>8</td>
<td>J41-1</td>
<td>0,007088</td>
<td>0,007088</td>
<td>82,53%</td>
</tr>
<tr>
<td>9</td>
<td>J41-2</td>
<td>0,007088</td>
<td>0,007088</td>
<td>82,53%</td>
</tr>
<tr>
<td>10</td>
<td>J75-3</td>
<td>0,007088</td>
<td>0,007088</td>
<td>82,53%</td>
</tr>
</tbody>
</table>

Tabel 8 menunjukkan hasil dari pengujian penentuan prioritas perbaikan jalan dengan menggunakan COPRAS-G yang sudah diurutkan berdasarkan nilai Ni. Diketahui urutan prioritas jalan yang diperoleh adalah pertama pada kode ruas jalan J53 adalah Jalan Manis 2 KM 1 dengan Ni sebesar 100%, urutan prioritas ke dua yaitu kode ruas jalan J55 adalah Jalan Kasir 2 KM 1 dengan Ni sebesar 90,96 % dan untuk urutan prioritas ketiga yaitu pada kode ruas jalan J67-5 adalah Jalan Imam Bonjol KM 5 dengan Ni sebesar 86,5% dan seterusnya hingga urutan terakhir adalah kode ruas jalan J29 yaitu jalan Hj. Runa.

V. KESIMPULAN

Berdasarkan hasil pengujian dan analisis mengenai penelitian ini maka dapat ditarik kesimpulan sebagai berikut:

1. Diperoleh bobot kepentingan masing-masing kriteria, yaitu pertama adalah Tataguna Lahan dengan bobot 0,5120, kedua Klasiifikasi Jalan dengan bobot 0,2677, ketiga adalah Kondisi Kerusakan Jalan dengan bobot 0,1290, keempat adalah Volume Kendaraan dengan bobot 0,0602 dan terakhir adalah Kecepatan Kendaraan dengan bobot 0,0311. Dengan nilai CR 0,0352 menunjukkan bahwa penilaian bobot kepentingan antar kriteria tersebut bersifat konsisten.

2. Dari pengujian yang telah dilakukan dapat dilihat urutan tingkat prioritas jalan dengan mengurutkan tingkat kepentingan (Ni) dari yang terbesar hingga yang terkecil. Jadi, urutan prioritas yang diperoleh dari proses ini yaitu, pertama pada kode ruas jalan J53 adalah Jalan Manis 2 KM 1 dengan Ni sebesar 100%, urutan prioritas ke dua yaitu kode ruas jalan J55 adalah Jalan Kasir 2 KM 1 dengan Ni sebesar 90,96 % dan untuk urutan prioritas ketiga yaitu pada kode ruas jalan J67-5 adalah Jalan Imam Bonjol KM 5 dengan Ni sebesar 86,5% dan seterusnya.
DAFTAR PUSTAKA

