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Abstract
This article presents an extension of our previous research in [1] where we propose two
variants of Megrelishvili key distribution schemes and investigate some of their elementary
theoretical security analysis. We briefly discuss the two protocols in [1] and propose another
two schemes which are more efficient than the preceding ones. Additionally, we also devise
effective procedures for constructing a new mutual key if the group membership is altered.
Furthermore, we discuss the security of the protocols rigorously and we provide a sufficient
condition for breaking the protocols by way of solving several instances of Megrelishvili
vector-matrix problems (MVMP). We prove that the secret group key can be recovered easily
if an attacker can express the sum of the secret exponents of the participants as a linear
combination of the secret exponents excerpted from the transmission. Based on this result,
we reason that our Megrelishvili key distribution schemes are theoretically at least as secure
as the standard two-party Megrelishvili key exchange procedure.

Keywords: Megrelishvili protocol, Megrelishvili key distribution scheme, key distribution
scheme, protocol extension

Abstrak
Artikel ini menyajikan sebuah pengembangan dari penelitian kami sebelumnya di [1] yang
berisi pengajuan dua varian skema distribusi kunci Megrelishvili dan pembahasan anali-
sis teori keamanan dasar mereka. Kami membahas secara singkat dua protokol di [1] dan
mengajukan dua skema lain yang lebih efisien daripada yang sebelumnya. Selain itu, kami
juga merancang prosedur yang efektif untuk membangun kunci bersama yang baru jika
keanggotaan kelompok diubah. Selanjutnya, kami membahas keamanan protokol-protokol
secara sistematis dan menyajikan suatu kondisi cukup (sufficient condition) untuk meme-
cahkan protokol-protokol tersebut dengan cara memecahkan beberapa kasus masalah vektor-
matriks Megrelishvili (Megrelishvili vector-matrix problem, MVMP). Kami membuktikan
bahwa kunci rahasia suatu kelompok dapat ditemukan dengan mudah bila penyerang dapat
mengekspresikan jumlah pangkat rahasia dari seluruh peserta sebagai kombinasi linier dari
pangkat rahasia yang diekstraksi dari transmisi. Berdasarkan hasil ini, kami beranggapan
bahwa skema distribusi kunci Megrelishvili secara teori setidaknya sama amannya dengan
prosedur pertukaran kunci Megrelishvili standar dua pihak.

Kata Kunci: protokol Megrelishvili, skema distribusi kunci Megrelishvili, skema distribusi
kunci, pengembangan protokol
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I. INTRODUCTION

The group communication among multiple participants is one of the omnipresent occurrence in our
modern world. On many occasions, this communication needs to be protected from unauthorized parties.
The protection can be achieved in many ways, one of them is by the creation of a mutual secret key
among legitimate participants. The efficient construction of the mutual secret key for group communication
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has been one of the central discussions in modern cryptography. Since the development of the Diffie-
Hellman key exchange (DHKE) procedure in [2], numerous protocols for the group key creation have been
proposed [3]–[6]. Despite these abundant options, the security of these key generation algorithms depends
on somewhat equivalent discrete logarithm problems in finite groups—which have been extensively
investigated in numerous studies [7]–[10].

The original concept of Megrelishvili key exchange procedure was first discussed in [11]. This protocol
can be considered as a linear algebra-based variant of the DHKE. It combines vector-matrix multiplication
and matrix exponentiation for the construction of the mutual secret key. These linear algebraic operations
cause the security of Megrelishvili protocol does not directly relate to a specific discrete logarithm
problem in a finite group. Thus, Megrelishvili key exchange procedure offers an alternative method for
the construction of a mutual key between two parties.

The objective of this article is to present an extension of our previous work in [1]—where we propose
two variants of multi-party Megrelishvili protocols and discuss their elementary theoretical security
analysis. These multi-party Megrelishvili protocols allow multiple participants to establish a common
mutual key using the computational characteristics of the standard two-party Megrelishvili key exchange.
In this article, we briefly discuss the two protocols in [1] and we propose another two key distribution
schemes which are more efficient than the previous protocols. Our construction idea of these protocols
is based on the extension idea of the generic two-party DHKE to multiple participants described in [3],
[5]. The correctness and some important characteristics of our key distribution schemes are discussed
rigorously. In addition, we also devise membership modification protocols for two of our schemes. These
additional protocols allow the group to add a new or delete an existing participant after the initial key
distribution is completed without running a complete re-execution of the procedure.

This article also presents a rigorous elementary theoretical security analysis of our Megrelishvili key
distribution schemes. The analysis is focused on the investigation of multi-party Megrelishvili shared key

problem (MMSKP) which was first addressed in [1]. We prove that MMSKP can be solved by means of
finding the solution of several MVMP (Megrelishvili vector-matrix problem) instances. Furthermore, we
show that the mutual secret key of the group can be computed efficiently if an attacker can express the
sum of the secret exponents of the participants as a linear combination of the secret exponents excerpted
from the transmission. By this result, we reason that our Megrelishvili key distribution procedures are at
least as secure as the original two-party Megrelishvili key exchange.

The rest of this article is organized as follows. We present our linear algebra notations and terminologies
in Section II. Next, we discuss some of our related works, e.g., the two-party and three-party Megrelishvili
protocols and some of their characteristics in Section III. The generalizations of Megrelishvili protocol for
key distribution scheme and their analyses are explained in Section IV. Section V discusses our proposed
membership modification protocols for two types of our key distribution procedure. The security of
the protocols are then analyzed in Section VI. Finally, some of the important concluding remarks are
summarized in Section VII.

II. LINEAR ALGEBRA NOTATIONS AND TERMINOLOGIES

Before we discuss some variants of Megrelishvili key distribution and their properties rigorously, we
first explain some of our notations and terminologies in linear algebra over finite fields. We use similar
notations as in [1], [12]–[14]. Throughout this paper, Fq denotes the finite field of q elements and F

n
q

denotes the n-dimensional vector space over Fq . We use boldface lowercase letters (e.g., v) to denote
all vectors in F

n
q and boldface uppercase letters (e.g., M) to denote all matrices over Fq . The vectors

are mostly considered and handled as row matrices, unless otherwise specified (e.g., in Section VI).
Therefore, for any v ∈ F

n
q and any n× n matrix M over Fq , the expression vM is well-defined and is

a vector in F
n
q . Moreover, the expression vM is called a left-multiplication of M by v, or equivalently,

a right-multiplication of v by M. The order of a nonsingular matrix M is the smallest positive integer s
that makes Ms = I, where I is the identity matrix. According to [15], the order of any n×n nonsingular
matrix over Fq is always less than or equal to qn − 1. Given N invertible matrices M1,M2, . . . ,MN ,
we define

∏N
k=1Mk = M1M2 · · ·Mn and

∏j
k=iMk = MiMi+1 · · ·Mj−1Mj if 1 ≤ i ≤ j ≤ N .
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For convenience, we define the empty product of invertible matrix, that is
∏j

k=iMk with i > j, as the
identity matrix.

Although for most part of the paper the matrices and vector spaces are considered over a finite field,
we utilize elementary linear algebra over real field to discuss some theoretical security aspects of our
protocols in Section VI. In this case, the vectors are typically considered and treated as column matrices.
Thus, for any v ∈ R

n and any m × n matrix M over R, the expression Mv is well-defined and is a
vector in R

m.

III. SOME RELATED WORKS

A. Two-Party Megrelishvili Protocol, MVMP, and MSKP

The two-party Megrelishvili protocol is an example of linear algebra-based variant of the Diffie-Hellman
key exchange. The theoretical concept of this protocol was first discussed in [11] by R. Megrelishvili, M.
Chelidze, and K. Chelidze. Since then, the study concerning this protocol has been conducted by numerous
researchers (e.g.: [1], [12]–[14], [16]–[19]). In this section, we briefly discuss the formal description of
the generic two-party protocol using the notations used in [1], [12]–[14], [19]. The reader is referred to
[12] for the discussion concerning the algorithm analyses and the comparison of the standard two-party
Megrelishvili protocol to other prominent variants of the Diffie-Hellman key agreement.

The mutual secret key in Megrelishvili protocol is a vector in F
n
q . Before the key exchange between

two participants takes place, a trusted third party chooses and publishes several public parameters, i.e.: a
finite field Fq , a nonsingular matrix M of size n× n over Fq , and a nonzero vector v ∈ F

n
q . The matrix

M is chosen in such a way that its order is sufficiently large. One method to construct the public matrix
M and the public nonzero vector v is discussed in [13]. The author in [13] suggested to choose M
that is similar to a companion matrix of a primitive polynomial over Fq

1. By using such M, Theorem
3 in [13] ensures that the value of vMt are all nonzero and distinct for any nonzero vector v ∈ F

n
q

and t ∈ [0, qn − 2]. The construction method for M and v in [13] also provides a maximal possible key
space in Megrelishvili protocol, i.e., any nonzero vector w ∈ F

n
q can be expressed as vMt for some

integer t.
Suppose the participants in the two-party Megrelishvili protocol are participant 1 (P1) and participant

2 (P2). To generate the mutual secret vector, each participant i picks a secret integer αi and constructs
a private matrix Pi =Mαi . Afterward, each participant i computes the vector ai = vPi and transmits
this value to another participant in an open channel. To retrieve the mutual vector, each participant right-
multiplies the received vector by its own private matrix. Because P1P2 = Mα1Mα2 = Mα1+α2 =
Mα1Mα2 = P2P1, we have vP1P2= vP2P1, and thus the key exchange is completed. This protocol
is summarized in Table I.

Since the exchange of vectors is performed over an open channel, the value of ai = vPi = vMti

is publicly known. This condition makes an attacker knows the values of a1 and a2. By observation,
the attacker can acquire the mutual secret vector by solving the equation ai = vMti for ti, where
i ∈ {1, 2}, and then computing the value of vMt1+t2 in a polynomial number of scalar operations in
Fq . Hence, from mathematical perspective, the security of Megrelishvili protocol strongly relates to the
Megrelishvili vector-matrix problem (MVMP), that is, the problem of determining the value t from the
equation vMt = w where M is a nonsingular matrix and both v and w are vectors of compatible
size [1], [12]–[14]. However, the actual objective of the attacker is to solve the Megrelishvili shared

key problem (MSKP), that is, the problem of computing the vector vMt1+t2 from the known values of
vMt1 and vMt2 [1], [14]. It is evident that the attacker can solve the MSKP by solving the MVMP first.
Moreover, if the attacker has retrieved the value of t1 and t2, then the value vMt1+t2 can be computed
in a polynomial number of scalar operations in Fq . This condition also implies that the MSKP is not
computationally harder than the MVMP. Nevertheless, to our knowledge, the formal relationship between
MVMP and MSKP has not been comprehensively explored.

1That is,M = P−1CP for some invertible matrix P and a matrix C whose characteristic polynomial is a primitive polynomial
over Fq .

Ind. Journal on Computing Vol. 2, Issue. 2, Sept 2017 57



MUHAMMAD ARZAKI:
ON THE GENERALIZATIONS OF MEGRELISHVILI...

Setup for public parameters
A trusted third party announce: a finite field Fq ,

a (large) integer n, an n× n nonsingular matrix M over Fq , and
a nonzero vector v ∈ F

n
q .

Generation of the private matrices
Participant 1 (P1) Participant 2 (P2)
Pick an integer α1. Pick an integer α2.

Calculate P1 =Mα1 . Calculate P2=Mα2 .
Exchange of vectors via an open channel

Participant 1 (P1) Participant 2 (P2)
Compute a1 = vP1. Compute a2 = vP2.
P1 transmits a1 to P2. P2 transmits a2 to P1.

Mutual secret key retrieval
Participant 1 (P1) Participant 2 (P2)

Compute a′1 = a2P1. Compute a′2 = a1P2.
The common secret vector is a′1 = a

′
2.

TABLE I: Two-party Megrelishvili protocol according to [1], [12]–[14], [19].

One straightforward method to solve the MVMP is by using the brute-force (exhaustive search) attack
described in [12]–[14]. If the order of the public matrix M is known, the attacker simply computes the
sequence of vectors vM0, vM1, . . . , vMb, where b is the order of M. However, if the order of the
public matrix is unknown, the attacker can assume that the order of M is maximal, i.e., b = qn− 1. The
brute-force method can solve the MVMP in Fn

q using O (n3 · qn) scalar operations under the assumption
that the standard O (n3) matrix multiplication algorithm is used for exponentiating the matrix and the
order of the public matrix is bounded by qn − 1. Besides this straightforward approach, there exists a
non-trivial method for solving the MVMP using collision algorithm described in [14]. Under the similar
aforementioned assumption, this algorithm requires at most O (log q · n4 · qn/2) scalar operations for
solving the MVMP in F

n
q , which means that it is faster than the exhaustive search attack by a factor of

O ((1/n log q) · qn/2). Nevertheless, the collision algorithm requires more storage during its execution
[14].

B. Three-Party Megrelishvili Protocol

In this section, we explain the extension of the two-party Megrelishvili protocol to a group containing
three members, namely P0, P1, and P2

2. This relatively straightforward extension was first discussed [1]
and it uses identical public parameters as in the two-party key exchange. Like the two-party protocol,
each member Pi initially generates a private matrix Pi by choosing an integer αi and setting Pi =Mαi .

The key exchange for three members consists of two rounds (or stages) of transmissions3. We define
aji as a vector computed by Pi at round j. At the beginning, each Pi calculates a0i = vPi. In the first
round, each Pi sends a0i to P(i+1)mod 3. This means P0 sends a00 to P1, P1 sends a01 to P2, and P2

sends a02 to P1. Each member Pi then right-multiplies the vector received by its own private matrix, the
resulting vector is denoted by a1i . Notice that we have a10 = a02P0 = vP2P0, a11 = a00P1 = vP0P1,
and a12 = a01P2 = vP1P2. In the second round, each Pi sends a1i to the identical recipient as in the
first round. To retrieve the mutual key, each member simply right-multiplies the vector received by its
own private matrix. At this point, we have a20 = a21 = a22 because

a20 = a12P0 = vP1P2P0, (1)

a21 = a10P1 = vP2P0P1, (2)

a22 = a11P2 = vP0P1P2, (3)

and P1P2P0 = P2P0P1 = P0P1P2 =Mα0+α1+α2 . This protocol is summarized in Table II. We refer
the reader to [1, Example 1] for small computational example of this protocol.

2To ease our subsequent analysis, we start the index of the group member with 0.
3One round or one stage is loosely defined as one series of transmission that involves all members.
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Setup for public parameters
The public parameters are identical

to those described for the two-party protocol.
Generation of the private matrices

Participant 0 (P0) Participant 1 (P1) Participant 2 (P2)
Pick an integer α0.
Compute P0 =Mα0 .

Pick an integer α1.
Compute P1 =Mα1 .

Pick an integer α2.
Compute P2 =Mα2 .

The values α0, α1, α2, P0, P1, and P2 are private.
Initialization (round 0)

Participant 0 (P0) Participant 1 (P1) Participant 2 (P2)
Compute a00 = vP0. Compute a01 = vP1. Compute a02 = vP2.

Round 1
Public exchange of vectors

P0 sends a00 to P1. P1 sends a01 to P2. P2 sends a02 to P0.
Private computation of vectors

P0 computes
a10 = a

0
2P0.

P1 computes
a11 = a

0
0P1.

P2 computes
a12 = a

0
1P2.

Round 2
Public exchange of vectors

P0 sends a10 to P1. P1 sends a11 to P2. P2 sends a12 to P0.
Private computation of vectors

P0 computes
a20 = a

1
2P0.

P1 computes
a21 = a

1
0P1.

P2 computes
a22 = a

1
1P2.

The mutual secret key is a20 = a
2
1 = a

2
2.

TABLE II: Megrelishvili key distribution for three members as explained in [1].

IV. SOME GENERALIZATIONS OF MEGRELISHVILI PROTOCOL FOR GROUP KEY DISTRIBUTION

This section discusses four different generalizations of Megrelishvili protocol for a group of N
participants and their elementary characteristics. The first two schemes have also been discussed in
[1]. Our idea is based on the extension of the generic two-party Diffie-Hellman key exchange to group
communication explained in [5].

A. Generic Multi-Party Megrelishvili Key Distribution

We first discuss a straightforward generalization of the three-party Megrelishvili protocol previously
explained in Section III-B to a group of N members. This procedure was first described in [1] and it
uses the same public parameters as in the two-party and the three-party protocols. Suppose the members
of the group are P0, P1, . . . , PN−1. At the beginning, each member Pi selects a secret integer αi and
computes the private matrix Pi =Mαi . If M is an n × n matrix over Fq of maximal order, the value
of αi can be drawn randomly from the integers in [0, qn − 2]. One objective of the protocol is to ensure
that each member eventually obtains the mutual vector vMs where s =

∑N−1
i=0 αi.

To establish the mutual secret key, initially the members are arranged in a circular configuration as in
[3]. With this configuration, each participant Pi always transmits its messages to participant P(i+1)modN .
The protocol uses N−1 rounds of vectors transmission to establish the mutual secret key. To facilitate our
analysis, let aji be a vector computed by Pi at round j where 0 ≤ i, j ≤ N −1. Before the key exchange
occurs, each member Pi calculates a0i = vPi. In the first round, Pi transmits a0i to P(i+1)modN , and
subsequently computes a1i = a0(i−1)modNPi. In general, at round j where 1 ≤ j ≤ N − 1, participant
Pi sends aj−1i to P(i+1)modN and calculates aji = aj−1(i−1)modNPi.

The uniformity of the mutual secret vectors in this protocol originates from the commutativity of the pri-
vate matrices’ product. This means the product

∏
i∈[0,N−1]Pi is the same regardless the order of the ma-

trices. Using mathematical induction, we can prove that aji = aj−1(i−1)modNPi = v
∏j

k=0P(i−j+k)modN
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for 0 ≤ j ≤ N − 1. Consequently, we get

aN−1i = v

N−1∏
k=0

P(i−N+1+k)modN (4)

= vP(i−N+1)modNP(i−N+2)modN · · ·P(i−1)modNPi = v
N−1∏
k=0

Pk, (5)

for all 0 ≤ i ≤ N − 1. The last equality in (5) ensures that each participant gets identical vector after
N − 1 rounds of messages transmission. The reader may refer to [1, Theorem 1] for more detailed
explanation regarding the correctness proof of this protocol.

We summarize the protocol in Table III and present its simulation procedure in Algorithm 1. By
observation, each member in the protocol only performs one matrix exponentiation for computing the
private matrix during the initialization step. Hence, this generic multi-party Megrelishvili protocol differs
from the conventional multi-party DHKE in [3] where exponentiation is always performed in each of
the rounds. The most extensively used operation in this protocol is the right-multiplication (i.e., the
vector-matrix multiplication), which can be performed using O (n2) scalar operations in Fq .

Setup for public parameters
The public parameters are identical

to those described for the two-party protocol.
Generation of the private matrices

For all 0 ≤ i ≤ N − 1, each participant Pi selects
a random integer αi and generates the private matrix Pi =M

αi .
The values αi and Pi are both private.

Initialization (round 0)
For all 0 ≤ i ≤ N − 1,

each participant Pi computes a0i = vPi.
Round j, where 1 ≤ j ≤ N − 1
Pi sends aj−1i to P(i+1)modN .

Pi calculates aji = a
j−1
(i−1)modN

Pi

The shared key is aN−1i for every 0 ≤ i ≤ N − 1.

TABLE III: A straightforward extension of Megrelishvili protocol for N participants as described in [1].

Algorithm 1 A procedure for simulating the generic multi-party Megrelishvili protocol as in [1].

Require: Public parameters as explained in Table III and an integer N ≥ 2 which denotes the number
of group members.

1: for i ← 0 to N − 1 do // N group members
2: Pi ←Mαi // private matrices generation for N group members
3: end for
4: for i ← 0 to N − 1 do // N group members
5: a0i ← vPi // initialization of a0i for 0 ≤ i ≤ N − 1
6: end for
7: for j ← 1 to N − 1 do // N − 1 rounds of transmission
8: for i ← 0 to N − 1 do // N group members
9: Pi sends aj−1i to P(i+1)modN // message transmission to Pi+1

10: Pi computes aji ← aj−1(i−1)modNPi // private computation of vector
11: end for
12: end for
Ensure: The value of aN−1i is the mutual key which is identical for every participant Pi (0 ≤ i ≤ N−1).

The generic key distribution procedure in Table III uses N − 1 rounds of messages transmission to
establish a mutual vector for N group members. This protocol also requires a prearranged initial circular
configuration before the key exchange occurs. The configuration is compulsory because every member

Muhammad Arzaki
On the Generalizations of Megrelishvili... 60



in the group always transmits its messages to the same predetermined recipient at any round. From
Table III, this configuration also implies that each member performs uniform steps in each of the rounds.
By observation, each member sends N − 1 messages, performs N right-multiplications, and receives
N −1 messages in the entire process. Additionally, the scheme also infers that the total number of right-
multiplications in the entire key exchange is N2. We summarize some of the important characteristics
in this protocol as follows:

1) total rounds: N − 1
2) total messages sent per member: N − 1
3) total messages received per member: N − 1
4) total right-multiplications (vector-matrix multiplications) per member: N
5) total messages in the entire protocol: N (N − 1)
6) total right-multiplications in the entire protocol: N2.

B. Megrelishvili Key Distribution with Upflow-Downflow Rounds

The protocol described in Table III has several drawbacks. Firstly, it needs an a priori ordering of the
group members. Among N members P0, P1, . . . , PN−1, this ordering is required because participant Pi

always sends its messages to participant P(i+1)modN . Secondly, this protocol needs N −1 rounds of key
exchange to establish the mutual secret vector. This section discusses a Megrelishvili key distribution
which uses only two rounds, i.e., the upflow and downflow rounds, which was first proposed in [1]. This
procedure is adapted from the GDH.1 scheme for the Diffie-Hellman key distribution explained in [5].
The public parameters used in this protocol is identical to those used in the previous one.

The aim of the upflow stage is to gather the contribution of each participant. Initially, for each 0 ≤ i ≤
N −1, participant Pi constructs the private matrix Pi. The upflow round is initiated by P0 by computing
the vectors vP0 and sending the upflow list U = [vP0] to P1. Participant P1 then right-multiplies the
last value in U by P1 (i.e., calculating vP0P1) and updates the upflow list by appending the resulting
vector (i.e., vP0P1) to U. Next, P1 sends the updated upflow list U = [vP0,vP0P1] to P2. In general,
for each 1 ≤ i ≤ N − 2, participant Pi right-multiplies the last value in U (i.e., v

∏i−1
k=0Pk) by Pi

and attaches the result to the previous list. This implies that each participant Pi with 0 ≤ i ≤ N − 2
always sends the upflow list U =

[
v
∏j

k=0Pk : 0 ≤ j ≤ i
]

to participant Pi+1. At the end of the upflow

stage, participant PN−1 receives the upflow list U =
[
v
∏j

k=0Pk : 0 ≤ j ≤ N − 2
]
. The mutual key

v
∏N−1

k=0 Pk can be retrieved by PN−1 simply by right-multiplying the last element of U by PN−1.
The purpose of the downflow stage is to distribute appropriate vector for each participant so that

each of them can compute the mutual secret key. The downflow stage consists of successive message
transmissions from Pi to Pi−1 for i ∈ [1, N − 1] in reverse order. Participant PN−1 initiates the downflow
stage by constructing the initial downflow list D, where

D =

[
v

(
N−1∏

k=N−1
Pk

)(
j−1∏
k=0

Pk

)
: 0 ≤ j ≤ N − 2

]
(6)

=

[
vPN−1

(
j−1∏
k=0

Pk

)
: 0 ≤ j ≤ N − 2

]
(7)

= [vPN−1,vPN−1P0,vPN−1P0P1, . . . ,vPN−1P0P1· · ·PN−4PN−3] , (8)

and then sends this list to PN−2. After that, PN−2 pops the last element of D and right-multiplies this
element by PN−2 to retrieve the key. Observe that

vPN−1

(
N−3∏
k=0

Pk

)
PN−2 = v

(
N−3∏
k=0

Pk

)
PN−2PN−1 = v

N−1∏
k=0

Pk (9)

due to the commutativity of the private matrices’ product. Next, PN−2 updates the list by right-multiplying
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each of the remaining N − 2 vectors by PN−2, yielding a new downflow list

D =

[
v

(
N−1∏

k=N−2
Pk

)(
j−1∏
k=0

Pk

)
: 0 ≤ j ≤ N − 3

]
(10)

=

[
vPN−2PN−1

(
j−1∏
k=0

Pk

)
: 0 ≤ j ≤ N − 3

]
(11)

= [vPN−2PN−1,vPN−2PN−1P0, . . . ,vPN−2PN−1P0· · ·PN−5PN−4] . (12)

In general, for i ∈ [1, N − 2] in reverse order, Pi pops the last element of downflow list D from Pi+1,
i.e.,v

(∏N−1
k=i+1Pk

)(∏i−1
k=0Pk

)
and retrieves the mutual key by right-multiplying this vector by Pi,

notice that

v

(
N−1∏
k=i+1

Pk

)(
i−1∏
k=0

Pk

)
Pi = v

(
i−1∏
k=0

Pk

)
Pi

(
N−1∏
k=i+1

Pk

)
(13)

= v

N−1∏
k=0

Pk, (14)

the equality in (13) follows from the commutativity of the matrices’ product. Subsequently, Pi updates
D by right-multiplying the remaining i vectors by Pi, yielding the list

D =

[
v

(
N−1∏
k=i

Pk

)(
j−1∏
k=0

Pk

)
: 0 ≤ j ≤ i− 1

]
, (15)

and sends this list to Pi−1. At the end of downflow round, P0 obtains the following list D from P1

D =

[
v

(
N−1∏
k=1

Pk

)(
j−1∏
k=0

Pk

)
: 0 ≤ j ≤ 0

]
=

[
v

N−1∏
k=1

Pk

]
. (16)

To get the mutual secret vector, P0 simply right-multiplies the only element in D by P0. We summarize
this protocol in Table IV and present its simulation procedure in Algorithm 2.

Setup for public parameters
The public parameters are identical

to those described for the two-party protocol.
Generation of the private matrices

The procedure for generating the private matrices is identical to
the procedure described in Table III.

Upflow round
Initialization for the upflow list

P0 constructs the list U = [vP0] and sends U to P1
For all 1 ≤ i ≤ N − 2,

(i) Pi reads the last element of U and right-multiplies it by Pi

(ii) Pi appends the right-multiplication result in (i) to U
(iii) Pi transmits U to Pi+1

Mutual key retrieval for PN−1
PN−1 reads the last element of U and right-multiplies it by PN−1,

the result is the mutual secret key (see (13) and (14)).
Downflow rounds

Initialization for the downflow list
PN−1 constructs the initial downflow list

as in (7) and sends D to PN−2
For all 0 ≤ i ≤ N − 2 in reverse order

(i) Pi pops the last element of D and right-multiplies it by Pi,
the result is the mutual secret key (see see (13) and (14))

(ii) if i �= 0, Pi right-multiplies each of the remaining i elements in D by Pi and transmits D to Pi−1

TABLE IV: Megrelishvili group key distribution with upflow-downflow rounds as in [1].
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Algorithm 2 A procedure for simulating the Megrelishvili key distribution using upflow-downflow rounds
as in [1].
Require: Public parameters as explained in Table IV and an integer N ≥ 2 which denotes the number

of group members.
1: for i ← 0 to N − 1 do // N group members
2: Pi ←Mαi // private matrices generation for N group members
3: end for
4: U← [vP0] // initialization of the upflow list
5: P0 transmits U to P1

6: for i ← 1 to N − 2 do // upflow round
7: U← U.append (U [i− 1] ·Ai) // upflow list construction
8: Pi sends U to Pi+1

9: end for
10: key for PN−1 is U [N − 2] ·PN−1 // key retrieval for PN−1
11: PN−1 constructs D as in Equation (7) and transmits D to PN−1
12: for i ← N − 2 down to 0 do // downflow round
13: Pi pops D [D.length− 1] // popping the last element of the list
14: key for Pi is D [D.length− 1] ·Pi // key retrieval for Pi

15: if i �= 0 then
16: Pi right-multiplies each of the remaining elements in D by Pi and sends D to Pi−1
17: end if
18: end for
Ensure: Each participant has an identical secret key.

Unlike the generic multi-party Megrelishvili key distribution scheme in Section IV-A, the Megrelishvili
key distribution procedure with upflow-downflow rounds does not require a predefined circular ordering
of the group members. Moreover, each participant in this upflow-downflow scheme performs different
computation depending on its order in a linear configuration of the members. This property also allows
the completion of the key distribution in two rounds.

The correctness of this protocol is derived from the property that the matrices P0,P1, . . . ,PN−1
commute. This implies that the right-multiplication procedure in (13) always produces the same vector
for every member of the group. The reader is referred to [1, Theorem 2] for the formal proof regarding
the correctness of Megrelishvili protocol with upflow-downflow rounds.

The upflow-downflow scheme allows a distribution of the mutual secret key using only two rounds,
i.e., the upflow and downflow rounds, regardless the number of participants within the group. Moreover,
unlike the generic scheme in Section IV-A, this scheme does not need a prior circular synchronization
of the group members. However, each group member performs different computational procedure that
depends on its appearance during the upflow round. During the upflow stage, Pi performs one vector-
matrix multiplication and updates the previous list with the resulting value. At the end of the upflow
round, the last participant retrieves the mutual key by right-multiplying the last element in the upflow
list by its own private matrix. Consequently, there are N vector-matrix multiplications in total during the
upflow round and the key retrieval for PN−1.

The downflow stage consists of sequential messages transmission in reverse order from that of the
upflow stage. From Table IV, we know that each Pi for 1 ≤ i ≤ N − 1 performs i vector-matrix
multiplications before it sends the downflow list to Pi−1. In addition, each Pi for 0 ≤ i ≤ N − 2
performs a vector-matrix multiplication to retrieve the mutual key. Thus, each Pi for 0 ≤ i ≤ N − 2
performs i + 1 right-multiplications during the downflow round, and consequently the total number
of right-multiplications performed by all Pi for 0 ≤ i ≤ N − 2 in this round is

∑N−2
i=0 (i+ 1) =

N (N − 1) /2. Since PN−1 performs N −1 right-multiplications at the beginning of the downflow stage,
the total number of right-multiplications performed by all participants during the downflow stage is
N (N − 1) /2 + (N − 1) = (N2 +N − 2) /2.

From the previous analysis, the total number of right-multiplications within the protocol described in
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Table IV is

N +
1

2
N2 +

1

2
N − 1 = 1

2
N2 +

3

2
N − 1 = 1

2

(
N2 + 3N − 2) , (17)

which is
(
N2 − 3N + 2

)
/2 multiplications fewer than that in the generic procedure in Section IV-A. In

summary, the Megrelishvili key distribution with upflow-downflow scheme has the following computa-
tional properties:

1) total rounds: 2 (upflow and downflow)
2) total messages sent per member: 2 for Pi with 0 < i < N − 1 (each contains i+ 1 vectors during

the upflow stage and i vectors during the downflow stage); 1 for P0 and PN−1 (P0 sends one vector
while PN−1 sends N − 1 vectors)

3) total messages received per member: 2 for Pi with 0 < i < N − 1 (each contains i vectors during
the upflow stage and i+1 vectors during the downflow stage); 1 for P0 and PN−1 (P0 receives one
vector while PN−1 receives N − 1 vectors)

4) total right-multiplications (vector-matrix multiplications) per member: i + 2 for Pi with 0 ≤ i <
N − 1; N for PN−1

5) total messages in the entire protocol: 2 (N − 1) with varying size from one to N − 1 vectors
6) total right-multiplications in the entire protocol: (N2 + 3N − 2)/2.

C. Megrelishvili Key Distribution with Upflow-Broadcast Rounds

The key distribution protocol with upflow-downflow rounds in Section IV-B allows a group to agree on
a mutual secret key using only two rounds of messages transmission. The first round is the upflow round
whose purpose is to collect the contribution of each group member. The second round is the downflow
round whose objective is to distribute vectors to every participant. Each round contains a sequence of
messages transmission between two adjacent participants. Suppose we consider a group of N members
P0, P1, . . . , PN−1. During the upflow round Pi always transmits its messages to Pi+1 for 0 ≤ i ≤ N−2.
The downflow round works in reverse direction to that of the upflow round, i.e., participant Pi always
sends its messages to Pi−1 for 1 ≤ i ≤ N − 1 in reverse order. Unlike the generic Megrelishvili key
distribution scheme in Section IV-A, the participants in the key distribution with upflow-downflow scheme
cannot retrieve the mutual secret key simultaneously. From observation, the key retrieval must be done
sequentially from PN−1 to P0 with Pi is the (N − i)-th participant to retrieve the key. That is, the first
member to retrieve the key is PN−1, whereas the last member to retrieve the key is P0.

In this section, we propose a two-stage Megrelishvili key distribution that allows a simultaneous key
retrieval for almost all of the group members. This scheme is adapted from GDH.2 scheme for the
Diffie-Hellman key distribution with upflow and broadcast rounds described in [5]. The first stage is the
upflow stage that is similar to the upflow round explained in the previous protocol. The aim of this stage
is to collect the contribution of each participant. At the end of this stage PN−1 retrieves the mutual key
by right-multiplying a particular vector by its private matrix. The second stage is the broadcast stage
whose aim is to distribute appropriate vector to each participant. Unlike the downflow round in Section
IV-B, the distribution of the vectors is performed by broadcast method. In this stage, PN−1 constructs a
list B of N − 1 vectors and then broadcasts this list to all other group members. Every member except
PN−1 uses the list B to simultaneously perform a specific vector-matrix multiplication for retrieving the
mutual secret vector.

Suppose there are N participants P0, P1, . . . , PN−1 whose corresponding private matrices are P0, P1,
. . . , PN−1, respectively. To commence the upflow stage, P0 creates the upflow list U = [vP0] and
sends this list to P1. Next, P1 uses the list U to construct the updated list U = [vP0P1,vP0,vP1] and
subsequently sends U to P2. Participant P2 then constructs the updated list U of four elements where
the first element of the new U is the first element in the previous list right-multiplied by P2, the second
element of the new U is the first element in the previous list, and the two remaining elements of the
new U are respectively the third and the last elements in the previous U right-multiplied by P2. In other
words, P2 produces the updated list U = [vP0P1P2,vP0P1,vP0P2,vP1P2] and subsequently sends
U to P3. In general, suppose Pi where 2 ≤ i ≤ N − 2 receives the upflow list Uold of length i+1 from
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Pi−1. Participant Pi uses Uold to create the updated list Unew of length i+ 2 using the following rules:

Unew [0] = Uold [0] ·Pi, (18)
Unew [1] = Uold [0] , (19)
Unew [j] = Uold [j − 1] ·Pi for all 2 ≤ j ≤ i+ 1. (20)

In other words, if Pi−1 sends the upflow list Uold = [Uold [0] ,Uold [1] , . . . ,Uold [i]] to Pi, then Pi creates
the updated upflow list Unew = [Uold [0] ·Pi,Uold [0] ,Uold [1] ·Pi, . . . ,Uold [i] ·Pi]. We now prove the
following lemma.

Lemma 1 For any 2 ≤ i ≤ N − 1, participant Pi receives the list U of length i+ 1 from Pi−1 where

U =

⎡
⎣v
(

i−1∏
k=0

Pk

)
,v

⎛
⎝ i−1∏

k=0,k �=i−1
Pk

⎞
⎠ ,v

⎛
⎝ i−1∏

k=0,k �=i−2
Pk

⎞
⎠ , . . . ,v

⎛
⎝ i−1∏

k=0,k �=0

Pk

⎞
⎠
⎤
⎦ (21)

Proof: We prove the lemma by induction on i and we use the rules (18), (19), and (20). For i = 2, (21)
tells us that P2 receives the following list U from P1

U =

⎡
⎣v
(

1∏
k=0

Pk

)
,v

⎛
⎝ 1∏

k=0,k �=1

Pk

⎞
⎠ ,v

⎛
⎝ 1∏

k=0,k �=0

Pk

⎞
⎠
⎤
⎦ = [vP0P1,vP0,vP1] , (22)

which conforms to the aforementioned description that P1 sends U = [vP0P1,vP0,vP1] to P2. Assume
that (21) holds for Pi−1, that is, Pi−1 receives the following list Uold from Pi−2

Uold =

⎡
⎣v
(

i−2∏
k=0

Pk

)
,v

⎛
⎝ i−2∏

k=0,k �=i−2
Pk

⎞
⎠ ,v

⎛
⎝ i−2∏

k=0,k �=i−3
Pk

⎞
⎠ , . . . ,

⎛
⎝v i−2∏

k=0,k �=0

Pk

⎞
⎠
⎤
⎦ . (23)

Notice that for 1 ≤ j ≤ i− 1 we have Uold [j] = v
(∏i−2

k=0,k �=i−j−1Pk

)
. We shall prove that (21) holds

for Pi. Suppose Unew is the updated list sent by Pi−1 to Pi. By rules (18), (19), and (20), we have

1) Unew [0] = Uold [0] ·Pi−1 = v
(∏i−2

k=0Pk

)
Pi−1 = v

(∏i−1
k=0Pk

)
,

2) Unew [1] = Uold [0] = v
(∏i−2

k=0Pk

)
= v
(∏i−1

k=0,k �=i−1Pk

)
,

3) for 2 ≤ j ≤ i,Unew [j] = Uold [j − 1] ·Pi−1 = v
(∏i−2

k=0,k �=i−j Pk

)
Pi−1 = v

(∏i−1
k=0,k �=i−j Pk

)
.

Consequently, we obtain

Unew =

⎡
⎣v
(

i−1∏
k=0

Pk

)
,v

⎛
⎝ i−1∏

k=0,k �=i−1
Pk

⎞
⎠ ,v

⎛
⎝ i−1∏

k=0,k �=i−2
Pk

⎞
⎠ , . . . ,v

⎛
⎝ i−1∏

k=0,k �=0

Pk

⎞
⎠
⎤
⎦ (24)

which is consistent to (21), and thus the proof is complete. �
From Lemma 1, we infer that PN−1 receives the list

U =

⎡
⎣v
(

N−2∏
k=0

Pk

)
,v

⎛
⎝ N−2∏

k=0,k �=N−2
Pk

⎞
⎠ ,v

⎛
⎝ N−2∏

k=0,k �=N−3
Pk

⎞
⎠ , . . . ,v

⎛
⎝ N−2∏

k=0,k �=0

Pk

⎞
⎠
⎤
⎦ (25)

from PN−2. To get the mutual key, PN−1 simply right-multiplies U [0] by PN−1. Afterward, PN−1
initiates the broadcast round by constructing the broadcast list B of N − 1 vectors. To construct this
list, PN−1 initially removes U [0] and shifts all remaining entries one position to the left. Next, PN−1
right-multiplies each of the entries by its private matrix. More formally, the entry B [j] of the broadcast
list B = [B [0] ,B [1] . . . ,B [N − 2]] of length N − 1 is defined as

B [j] = U [j + 1] ·PN−1 for all 0 ≤ j ≤ N − 2. (26)

The broadcast list B is transmitted by PN−1 to all remaining members simultaneously. The mutual
key retrieval by Pi for 0 ≤ i ≤ N − 2 is performed by calculating the vector B [N − 2− i] · Pi. In
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practice, PN−1 may send unique vector that correlates to the mutual key computation for each of the other
members. That is, PN−1 sends only the value B [N − 2− i] to each participant Pi for 0 ≤ i ≤ N − 2.
We present the summary of this protocol in Table V and its simulation procedure in Algorithm 3. The
correctness of this key distribution scheme is derived from the property that the product

∏
k∈[0,N−1]Pk is

always the same regardless the order of the matrices. This condition happens because the private matrices
P0,P1, . . . ,PN−1 commute. We prove the correctness of this protocol in Theorem 1.

Theorem 1 At the end of the broadcast round, each group member in the upflow-broadcast Megrelishvili

key distribution scheme described in Table V gets an identical vector as its mutual secret key.

Proof: By Lemma 1, PN−1 receives the upflow list U from PN−2 with U [0] = v
(∏N−2

k=0 Pk

)
. Subse-

quently, PN−1 right-multiplies U [0] by PN−1 to obtain the mutual key, i.e.,

U [0] ·PN−1 = v

(
N−2∏
k=0

Pk

)
PN−1 = v

N−1∏
k=0

Pk. (27)

Next PN−1 constructs the broadcast list B using (26). By observation, we have

B =

⎡
⎣v
⎛
⎝ N−1∏

k=0,k �=N−2−j

Pk

⎞
⎠ : 0 ≤ j ≤ N − 2

⎤
⎦ (28)

=

⎡
⎣v
⎛
⎝ N−1∏

k=0,k �=N−2
Pk

⎞
⎠ ,v

⎛
⎝ N−1∏

k=0,k �=N−3
Pk

⎞
⎠ , . . . ,v

⎛
⎝ N−1∏

k=0,k �=1

Pk

⎞
⎠ ,v

⎛
⎝ N−1∏

k=0,k �=0

Pk

⎞
⎠
⎤
⎦ . (29)

Each participant Pi (0 ≤ i ≤ N − 2) retrieves the mutual secret vector by computing B [N − 2− i] ·Pi,
i.e.,

B [N − 2− i] ·Pi = v

⎛
⎝ N−1∏

k=0,k �=N−2−(N−2−i)

Pk

⎞
⎠ ·Pi = v

⎛
⎝ N−1∏

k=0,k �=i

Pk

⎞
⎠ ·Pi (30)

= v

(
N−1∏
k=0

Pk

)
, (31)

the equality in (31) comes from the commutativity of matrices’ product. Therefore, we conclude that
each member Pi (0 ≤ i ≤ N − 1) gets identical mutual vector at the end of the broadcast round. �

The upflow-broadcast scheme combines the benefits of the generic scheme in Section IV-A and the
upflow-downflow scheme in Section IV-B. Specifically, it provides a two stage key distribution whilst
allows a simultaneous mutual key retrieval for almost all participants. Additionally, the upflow-broadcast
scheme does not need a predetermined configuration of the group members before the key distribution
occurs. However, the computational burden for each participant is different and it depends on the
participant’s order during the upflow stage.

By observation, each participant Pi (0 ≤ i ≤ N − 2) carries out i + 1 vector-matrix multiplications
during the upflow round. Thus, the total number of this operation in the upflow round is

∑N−2
i=0 (i+ 1) =

N (N − 1) /2. For the next step, participant PN−1 performs one right-multiplication for retrieving the
mutual key and N − 1 right-multiplications for constructing the broadcast list. Finally, each participant
Pi (0 ≤ i ≤ N − 2) retrieves the mutual key by performing one vector-matrix multiplication. Thus, the
total number of right-multiplications for the mutual key retrieval in the entire procedure is N . Therefore,
the total number of vector-matrix multiplications in the entire scheme is

N (N − 1) /2 + (N − 1) +N =
1

2
N2 +

3

2
N − 1 = (N2 − 3N + 2

)
/2, (32)

which is equal to (17). This implies that the total number of operations in upflow-broadcast scheme is
identical to that of the upflow-downflow scheme. The Megrelishvili key distribution with upflow-broadcast
scheme has the following characteristics:

1) total rounds: 2 (upflow and broadcast)
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Setup for public parameters
The public parameters are identical

to those described for the two-party protocol.
Generation of the private matrices

The procedure for generating the private matrices is identical to
the procedure described in Table III.

Upflow round
Initialization for the upflow list

P0 constructs the list U = [vP0] and sends U to P1
P1 constructs the list U = [vP0P1,vP0,vP1] and sends U to P2

For all 2 ≤ i ≤ N − 2,
(i) Pi receives the list Uold of length i+ 1 from Pi−1
(ii) Pi constructs the updated list Unew of length i+ 2 using the rules (18), (19), and (20), that is:

Unew [1] = Uold [0], Unew [0] = Uold [0] ·Pi, and Unew [j] = Uold [j − 1] ·Pi for all 2 ≤ j ≤ i+ 1

Mutual key retrieval for PN−1
PN−1 reads the first element of U and right-multiplies it by PN−1,
the operation U [0] ·PN−1 yields the mutual secret vector for PN−1

Broadcast round
Initialization for the broadcast list

PN−1 constructs the initial broadcast list as in (26),
that is, the broadcast list is B where B [j] = U [j + 1] ·PN−1 for all 0 ≤ j ≤ N − 2.

Mutual key retrieval for Pi (0 ≤ i ≤ N − 2)
Pi computes B [N − 2− i] ·Pi to retrieve the mutual secret key.

TABLE V: Megrelishvili group key distribution with upflow-broadcast rounds.

2) total messages transmitted per member: 1 (each contains different number of vectors: P0 sends one
vector, PN sends N − 1 vectors, and Pi for 1 ≤ i ≤ N − 2 sends i+ 2 vectors)

3) total messages received per member: 2 for Pi with 0 < i < N − 1 (one during the upflow round
and one during the broadcast round, each Pi where 2 ≤ i ≤ N − 2 receives i+1 vectors during the
upflow round, P1 receives one vector during the upflow round, and each Pi where 1 ≤ i ≤ N − 2
receives N − 1 vectors during the broadcast round); 1 for P0 and PN−1 (P0 receives N − 1 vectors
while PN−1 receives N vectors)

4) total right-multiplications (vector-matrix multiplications) per member: i + 2 for Pi with 0 ≤ i <
N − 1; N for PN−1

5) total messages in the entire protocol: N with varying size from one to N vectors
6) total right-multiplications in the entire protocol: (N2 + 3N − 2)/2.

D. Megrelishvili Key Distribution with Upflow-Broadcast-Response Rounds

The vector-matrix multiplication (i.e., right-multiplication of a vector v by a matrix P) is the most
extensively used mathematical operation in Megrelishvili key distribution schemes. The effectiveness of
each scheme can be measured by the number of vector-matrix multiplications in the entire protocol.
The generic key distribution scheme in Section IV-A requires N2 vector-matrix multiplications, whereas
both key distribution procedures in Section IV-B and Section IV-C need (N2 + 3N − 2)/2 vector-
matrix multiplications. We deduce that each of these schemes requires O (N2

)
number of vector-matrix

multiplications in its whole process. In other words, the number of vector-matrix multiplications required
for completing the key distribution procedure is quadratic with respect to the group size.

In this section, we propose a version of Megrelishvili key distribution for N participants that requires
no more than O (N) number of vector-matrix multiplications. In other words, the number of vector-
matrix multiplications in our proposed scheme is linear as regards to the size of the group. This scheme
is adapted from GDH.3 protocol for the group Diffie-Hellman key exchange explained in [5]. The scheme
consists of four rounds: the upflow round, the first broadcast round, the response round, and the second
broadcast round. Henceforth, we refer to this scheme as Megrelishvili key distribution with upflow-
broadcast-response rounds. Similar to the previous key distribution procedures, the correctness of this
scheme relies on the commutativity of the private matrices’ product.

We consider a group of N participants labeled as Pi for 0 ≤ i ≤ N − 1, each with corresponding
private matrix Pi. The upflow round in this scheme is simpler than that of the upflow-downflow scheme
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Algorithm 3 A procedure for simulating the Megrelishvili key distribution using upflow-broadcast rounds.

Require: Public parameters as explained in Table V and an integer N ≥ 3 which denotes the number
of group members.

1: for i ← 0 to N − 1 do // N group members
2: Pi ←Mαi // private matrices generation for N group members
3: end for
4: U← [vP0] // initialization of the upflow list
5: P0 transmits U to P1

6: U← [vP0P1,vP0,vP1]
7: P1 transmits U to P2

8: for i ← 2 to N − 2 do // upflow round
9: Uold ← U // storing the previous upflow list

10: U [0]← Uold [1] ·Pi // applying (18)
11: U [1]← Uold [0] // applying (19)
12: for j ← 2 to i do // applying (20)
13: U [j]← Uold [j − 1] ·Pi

14: end for
15: U← U.append (Uold [i] ·Pi) // handling the case j = i+ 1 in (20)
16: Pi sends U to Pi+1

17: end for
18: key for PN−1 is U [0] ·PN−1 // key retrieval for PN−1
19: PN−1 constructs B as in (26) and broadcasts B to all other group members // broadcast round
20: for all i ∈ [0, N − 2] do
21: key for Pi is B [N − 2− i] ·Pi // key retrieval for Pi (0 ≤ i ≤ N − 2)
22: end for
Ensure: Each participant has an identical secret key.

in Section IV-B. Initially, P0 sends vP0 to P1 who then uses this value to send vP0P1 to P2. In general,
for 1 ≤ i ≤ N − 2, Pi right-multiplies the vector from Pi−1 by Pi and sends the result to Pi+1. Thus,
each participant Pi (0 ≤ i ≤ N − 2) sends the vector v

∏i
k=0Pk to Pi+1.

Apart from sending the vector v
∏N−2

k=0 Pk to PN−1, participant PN−2 also broadcasts this vector to
all other participant Pi (0 ≤ i ≤ N − 3). Therefore, every Pi (0 ≤ i ≤ N − 1) possesses the value
v
∏N−2

k=0 Pk. Notice that as early as the upflow round is completed, PN−1 can retrieve the mutual key
by right-multiplying the vector from PN−2 by its own private matrix.

The next stage is the response round where each participant Pi (0 ≤ i ≤ N−2) calculates the following
vector

v

(
N−2∏
k=0

Pk

)
P−1i = v

N−2∏
k=0,k �=i

Pk. (33)

Recall that each Pi is invertible (thus, its inverse exists) and the private matrices commute. In addition,
the computation of P−1i can be performed using O (n3) scalar operations in Fq whenever Pi is an n×n

nonsingular matrix over Fq . Afterward, each Pi (0 ≤ i ≤ N − 2) defines R [i] = v
∏N−2

k=0,k �=iPk and
transmits this value to PN−1. The last step implies PN−1 receives the values R [i] for all 0 ≤ i ≤ N −2.
These values are then stored in the response list R = [R [0] ,R [1] , . . . ,R [N − 2]] of length N − 1.

After constructing the response list R, participant PN−1 creates the broadcast list B of length N − 1
where B [j] = R [j] · PN−1 for each 0 ≤ j ≤ N − 2. Subsequently, PN−1 broadcasts B to all other
remaining members simultaneously. However, in practice PN−1 can send unique value to each of the
remaining participants, i.e., PN−1 sends each Pi (0 ≤ i ≤ N − 2) the vector B [i].

To conclude the key distribution scheme, each participant Pi reads the broadcast list and right-multiplies
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B [i] by its own private matrix. For each Pi, we have

B [i] ·Pi = R [i] ·PN−1 ·Pi (34)

= v

⎛
⎝ N−2∏

k=0,k �=i

Pk

⎞
⎠ ·PN−1 ·Pi (35)

= v

⎛
⎝ N−1∏

k=0,k �=i

Pk

⎞
⎠ ·Pi = v

N−1∏
k=0

Pk, (36)

the last equality in (36) originates from the commutativity of the matrices’ product. We present the
summary of this scheme in Table VI and its simulation procedure in Algorithm 4.

Setup for public parameters
The public parameters are identical

to those described for the two-party protocol.
Generation of the private matrices

The procedure for generating the private matrices is identical to
the procedure described in Table III.

Upflow round
Initialization for the upflow value

P0 computes vP0 and sends this value to P1
For all 1 ≤ i ≤ N − 2,

(i) Pi receives the vector v
∏i−1

k=0Pk from Pi−1
(ii) Pi right-multiplies the vector v

∏i−1
k=0Pk by Pi

(iii) Pi sends v
∏i

k=0Pk to Pi+1

Mutual key retrieval for PN−1
PN−1 right-multiplies the vector from PN−2 by PN−1, that is:

v
(∏N−2

k=0 Pk

)
PN−1 = v

(∏N−1
k=0 Pk

)
, the result is the mutual secret vector

First Broadcast round
PN−2 broadcasts the value v

∏N−2
k=0 Pk to all participant Pi with 0 ≤ i ≤ N − 3
Response round

For all 0 ≤ i ≤ N − 2,
(i) Pi computes P−1i (the inverse of its private matrix)
(ii) Pi calculates v

(∏N−2
k=0 Pk

)
P−1i = v

∏N−2
k=0,k �=iPk

(iii) Pi defines R [i] = v
∏N−2

k=0,k �=iPk and sends R [i] to PN−1
Second Broadcast round

(i) PN−1 constructs the broadcast list B of length N − 1 where B [j] = R [j] ·PN−1 for 0 ≤ j ≤ N − 2
(ii) PN−1 broadcasts the list B to all Pi with 0 ≤ i ≤ N − 2

Mutual key retrieval for Pi (0 ≤ i ≤ N − 2)
Pi reads B [i] and calculates B [i] ·Pi to retrieve the mutual secret vector

TABLE VI: Megrelishvili group key distribution with upflow-broadcast-response rounds.

We state the correctness of this key distribution scheme in Theorem 2.

Theorem 2 Each of the participants in Megrelishvili key distribution scheme described in Table VI

receives an identical vector as its mutual key at the end of the second broadcast round.

Proof: As early as the upflow round is over, PN−1 can retrieve the mutual key by right-multiplying the
upflow vector from PN−2 by PN−1, we have v

(∏N−2
k=0 Pk

)
PN−1 = v

∏N−1
k=0 Pk. Each participant Pi

with 0 ≤ i ≤ N − 2 can retrieve the mutual key by right-multiplying the entry B [i] in the broadcast list
by Pi. Recall that from (34), (35), and (36), we have B [i] ·Pi = R [i] ·PN−1 ·Pi = v

(∏N−2
k=0,k �=iPk

)
·

PN−1 ·Pi = v
∏N−1

k=0 Pk. �
Like the upflow-broadcast scheme in Section IV-C, the Megrelishvili key distribution scheme with

upflow-broadcast-response rounds enables almost all participants to retrieve the mutual key simulta-
neously. Furthermore, we shall show that this protocol uses fewer right-multiplications (vector-matrix
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Algorithm 4 A procedure for simulating the Megrelishvili key distribution using upflow-broadcast-
response rounds.

Require: Public parameters as explained in Table VI and an integer N ≥ 3 which denotes the number
of group members.

1: for i ← 0 to N − 1 do // N group members
2: Pi ←Mαi // private matrices generation for N group members
3: end for
4: u← vP0 // initialization of the upflow vector
5: P0 transmits u to P1

6: for i ← 1 to N − 2 do // upflow round
7: u← uPi // right-multiplication by Pi

8: Pi sends u to Pi+1

9: end for
10: key for PN−1 is uPN−1 // key retrieval for PN−1
11: PN−2 broadcasts u to all participant Pi with 0 ≤ i ≤ N − 3 // first broadcast round
12: for all i ∈ [0, N − 2] do // response round
13: Pi calculates P−1i and v

(∏N−2
k=0 Pk

)
P−1i = v

∏N−2
k=0,k �=iPk

14: Pi defines R [i]← v
∏N−2

k=0,k �=iPk

15: Pi sends R [i] to PN−1
16: end for
17: for i ← 0 to N − 2 do // broadcast list construction by PN−1
18: B [i]← R [i] ·PN−1
19: end for
20: PN−1 broadcasts B to all participant Pi with 0 ≤ i ≤ N − 2 // second broadcast round
21: for all i ∈ [0, N − 2] do
22: key for Pi is B [i] ·Pi // key retrieval for Pi (0 ≤ i ≤ N − 2)
23: end for
Ensure: Each participant has an identical secret key.

multiplications) than the previous ones. From Table VI, we know that each participant Pi with 0 ≤
i ≤ N − 2 performs one right-multiplication during the upflow stage. This means that there are N − 1
right-multiplications overall during this round. After the first broadcast round, each participant Pi with
0 ≤ i ≤ N−2 performs one right-multiplication and sends the resulting value to PN−1. The total number
of right-multiplications in this stage is N − 1. For constructing the broadcast list B, participant PN−1
collects the vectors from all other members and carries out N − 1 right-multiplications. Each participant
(including PN−1) then performs one right-multiplication to obtain the mutual secret key to conclude the
protocol. This implies that the key retrieval in the entire protocol requires N right-multiplications. From
this analysis, the Megrelishvili key distribution scheme with upflow-broadcast-response rounds in Table
VI requires

(N − 1) + (N − 1) + (N − 1) +N = 4N − 3, (37)

right-multiplications, which is
(
N2 − 11N + 8

)
/2 operations fewer than (17) and (32). Thus, the number

of right-multiplications in this scheme is linear with respect to the group size. By inspection, we deduce
some significant characteristics of Megrelishvili protocol as follows:

1) total rounds: 4 (upflow, first broadcast, response, and second broadcast)
2) total messages transmitted per member: 2 for Pi with 0 ≤ i ≤ N − 3 (each contains one vector); 3

for PN−2 (each contains one vector); 1 for PN−1 (a list of N − 1 vectors)
3) total messages received per member: 2 for P0 and PN−2 (P0 gets one vector from PN−2 and a list

of N − 1 vectors from PN−1, PN−2 gets one vector from PN−3 and a list of N − 1 vectors from
PN−1); 3 for Pi with 1 ≤ i ≤ N − 3 (one vector from Pi−1, one vector from PN−2, and a list of
N − 1 vectors from PN−1); N for PN−1 (each contains one vector)

4) total right-multiplications (vector-matrix multiplications) per member: 3 for Pi with 0 ≤ i ≤ N − 2
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(one during the upflow round, one during the response round, and one for the mutual key retrieval),
N for PN−1.

5) total messages in the entire protocol: 2N with varying size from one to N − 1 vectors
6) total right-multiplications in the entire protocol: 4N − 3.

V. PROTOCOLS FOR GROUP MEMBERSHIP MODIFICATION

All schemes in Section IV assume that the members of the group are determined prior to the execution
of the protocols. However, sometimes it is necessary to insert a new or delete an existing participant in
the protocols after the key distribution is completed. Pragmatically, it is enviable to perform so without
having to re-execute the process all over again. In this section, we concisely propose the procedures
for inserting a new and removing an existing group member for the upflow-broadcast scheme and the
upflow-broadcast-response scheme. We choose these schemes due to their efficient nature in the key
distribution process. Our procedures are inspired by the similar group membership alteration protocols
explained in [5].

A. Protocols for a New Participant Insertion

Suppose initially there are N participants labeled as P0, P1, . . . , PN−1 who have completed a key
distribution using upflow-broadcast scheme. The formation of a new mutual key for N + 1 participants
which consist of the original N members and a new member labeled as PN needs to satisfy two
specifications. First, the group does not need to re-run the key distribution anew. Second, the previous
mutual key for N group members should remain secret from outsiders as well as PN . In the upflow-
broadcast scheme, these intentions can be achieved using the following protocols:

1) We assume that PN−1 saves the contents of the upflow list U from PN−2 as in (25).
2) To make the previous group key remains secret, PN−1 chooses a new integer α̂N−1 �= αN−1 and

generates P̂N−1 =Mα̂N−1 . Additionally, PN−1 also needs to ensure that P̂N−1 �= PN−1.
3) Participant PN−1 then constructs the new upflow list by right-multiplying each of the entries in U

by P̂N−1, the resulting updated list is

U =

⎡
⎣v
(

N−2∏
k=0

Pk

)
P̂N−1,v

⎛
⎝ N−2∏

k=0,k �=N−2
Pk

⎞
⎠ P̂N−1, . . . ,v

⎛
⎝ N−2∏

k=0,k �=0

Pk

⎞
⎠ P̂N−1

⎤
⎦ , (38)

and PN−1 subsequently sends this list PN .
4) Next, PN chooses an integer αN , generates PN =MαN , and computes

a) v
(∏N−2

k=0 Pk

)
P̂N−1PN = v

(∏N
k=0,k �=N−1Pk

)
P̂N−1 for the mutual key,

b) B =
[
v
(∏N

k=0,k �=N−1Pk

)
,v
(∏N

k=0,k �=N−1,k �=N−2Pk

)
P̂N−1, . . . ,v

(∏N
k=0,k �=N−1,k �=0Pk

)
P̂N−1

]
for the broadcast list.

5) After receiving the broadcast message from PN , each participant Pi with 0 ≤ i ≤ N − 1 then
computes the mutual key by right-multiplying B [N − 1− i] by its own private matrix.

Member insertion in upflow-broadcast-response scheme is almost identical to that in upflow-broadcast
scheme. Suppose there are N initial participants labeled as P0, P1, . . . , PN−1 and a new participant
labeled as PN . The protocol for inserting a new member has to comply with the efficiency and security
aspects as described previously for the upflow-broadcast scheme. These intentions can be accomplished
in the following steps:

1) We assume that PN−1 keeps the message from PN−2 (that is, the vector v
∏N−2

k=0 Pk) and the
response list R where R [i] = v

∏N−2
k=0,k �=iPk as described in Table VI.

2) To make the previous group key remains secret, PN−1 chooses a new integer α̂N−1 �= αN−1 and
generates P̂N−1 =Mα̂N−1 . Additionally, PN−1 also needs to ensure that P̂N−1 �= PN−1.

3) Subsequently, PN−1 performs the following steps:
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a) Participant PN−1 right-multiplies the broadcast message from PN−2 by its new private matrix
P̂N−1 and sends the resulting value to PN . Accordingly, PN has the vector v

(∏N−2
k=0 Pk

)
P̂N−1.

b) Participant PN−1 right-multiplies each of the elements in the response list R by P̂N−1 and appends
the vector v

∏N−2
k=0 Pk to the resulting list. The outcome is denoted as the list R′. Afterward PN−1

sends R′ to PN .
4) We assume that participant PN chooses an integer αN and uses PN =MαN as its private matrix.
5) After receiving the list R′ from PN−1, participant PN right-multiplies each vector in R′ by PN and

defines the resulting list as the broadcast list B. This list is then broadcast to all remaining group
members.

6) For the key retrieval, PN simply right-multiplies the vector v
(∏N−2

k=0 Pk

)
P̂N−1 by PN while each

of the other group members computes the mutual key by right-multiplying the vector B [i] by its
own private matrix (i.e., participant Pi with 0 ≤ i ≤ N − 2 computes B [i] · Pi while participant
PN−1 computes B [N − 1] · P̂N−1).

B. Protocols for an Existing Participant Removal

We consider a group of N members P0, P1, . . . , PN−1 who have completed a key distribution using
upflow-broadcast scheme. Suppose the group wants to remove a member Pr for some 0 ≤ r ≤ N − 1.
The formation of a new mutual key for N − 1 participants needs to fulfil two properties. First, the group
does not need to re-run the key distribution all over again. Second, the new mutual key for the initial N
members should remain secret from outsiders as well as Pr. In the following member removal protocol
for upflow-broadcast scheme, we assume that r �= N − 1. The key agreement steps are as follows:

1) Participant PN−1 is assumed to have save the upflow list U of length N from PN−2 as in (25).
2) To ensure that the initial group key remains secret, PN−1 chooses a new integer α̂N−1 �= αN−1

and generates P̂N−1 =Mα̂N−1 . Additionally, PN−1 also needs to ensure that P̂N−1 �= PN−1.
3) The key retrieval for PN−1 is performed by right-multiplying U [0] by P̂N−1. The new mutual key

is v
(∏N−2

k=0 Pk

)
P̂N−1.

4) In the case that Pr (for some 0 ≤ r ≤ N − 2) is detached from the group, PN−1 needs to ensure
that only Pi with 0 ≤ i ≤ N − 1 and i �= r can retrieve the new mutual key. Thus, PN−1 defines a
broadcast list B of length N − 1 as follows:

B [i] =

{
U [i+ 1] · P̂N−1, for all 0 ≤ i ≤ N − 2 with i �= N − 2− r
v (the public vector), otherwise.

(39)

Subsequently, PN−1 broadcast this list to all other group members. Observe that (39) is analogous
to (26).

5) The key retrieval for Pi with 0 ≤ i ≤ N−2 and i �= r is performed by calculating B [N − 2− i]·Pi.
In this case, we have

B [N − 2− i] ·Pi = U [N − 1− i] · P̂N−1 ·Pi (40)

= v

⎛
⎝ N−2∏

k=0,k �=i

Pk

⎞
⎠ · P̂N−1 ·Pi = v

(
N−2∏
k=0

Pk

)
· P̂N−1. (41)

This procedure ensures that the removed member Pr unable to compute the new mutual key because the
vector v

(∏N−2
k=0,k �=r Pk

)
· P̂N−1 is missing from the list. In particular, the operation B [N − 2− r] ·Pr

yields vPr. In the event that PN−1 is removed from the group, PN−2 assumes the role as the last
participant as explained earlier.

Member removal in upflow-broadcast-response scheme is almost similar to that in upflow-broadcast
scheme. Suppose there are N initial participants labeled as P0, P1, . . . , PN−1 and the group wants to
remove Pr for some 0 ≤ r ≤ N − 1. The protocol for removing a member needs to fulfil the efficiency
and security requirements as described previously for the upflow-broadcast scheme. If r �= N − 1, these
purposes can be attained using the following steps:
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1) Participant PN−1 is assumed to retain the message from PN−2 (that is, the vector v
∏N−2

k=0 Pk) and
the response list R where R [i] = v

∏N−2
k=0,k �=iPk as described in Table VI.

2) To ensure that the initial group key remains secret, PN−1 chooses a new integer α̂N−1 �= αN−1
and generates P̂N−1 =Mα̂N−1 . Additionally, PN−1 also needs to ensure that P̂N−1 �= PN−1.

3) The key retrieval for PN−1 is performed by right-multiplying the message from PN−2 by P̂N−1.
The new mutual key is v

(∏N−2
k=0 Pk

)
P̂N−1.

4) In the case that Pr (for some 0 ≤ r ≤ N − 2) is removed from the group, PN−1 needs to ensure
that only Pi with 0 ≤ i ≤ N − 1 and i �= r can retrieve the new mutual key. Thus, PN−1 defines a
broadcast list B of length N − 1 as follows:

B [i] =

{
R [i] · P̂N−1, for all 0 ≤ i ≤ N − 2 with i �= r
v (the public vector), otherwise.

(42)

Afterward, PN−1 broadcast this list to all other group members. Observe that (39) is analogous to
the definition of the ordinary broadcast list in Table VI.

5) The key retrieval for Pi with 0 ≤ i ≤ N − 2 and i �= r is performed by calculating B [i] · Pi. In
this case, we have

B [i] ·Pi = R [i] · P̂N−1 ·Pi (43)

= v

⎛
⎝ N−2∏

k=0,k �=i

Pk

⎞
⎠ · P̂N−1 ·Pi = v

(
N−2∏
k=0

Pk

)
· P̂N−1. (44)

This procedure ensures that the removed member Pr unable to compute the new mutual key because
the vector v

(∏N−2
k=0,k �=r Pk

)
· P̂N−1 is missing from the list. In particular, we have B [r] · Pr = vPr.

In the event that PN−1 is removed from the group, PN−2 assumes the role as the last participant as
explained earlier.

VI. ELEMENTARY THEORETICAL SECURITY ANALYSIS

One important security requirement for the key distribution protocols in Section IV and Section V
is the secrecy of the mutual group key created. The protocols must ensure that no outsider can recover
the mutual key easily. We notice that in a group of N participants P0, P1, . . . , PN−1, the mutual key
is v
∏N−1

k=0 Pk. Let I = {0, 1, . . . , N − 1}, then the mutual key can be rewritten as v
∏

k∈I Pk due to
the commutativity of the private matrices. By observation, any message sent during the transmission in
our key distribution protocols contains at least one vector of the form v

∏
k∈J Pk for some J ⊂ I. An

eavesdropper (Eve) may recover the mutual key if she can reconstruct the value v
∏

k∈I Pk from several
vectors of the form v

∏
k∈J Pk with J ⊂ I.

More formally, suppose {J1,J2, . . . ,Jm} denotes a collection of m non-empty subset of I, that is
Ji ⊂ I for all 1 ≤ i ≤ m. We assume that Eve intercepts the transmission and accordingly owns m
vectors w1,w2, . . . ,wm, and each wi satisfies wi = v

∏
k∈Ji

Pk with 1 ≤ i ≤ m. To recover the mutual
key, she must be able to calculate the value of v

∏
k∈I Pk using only m vectors wi where 1 ≤ i ≤ m.

In addition, it is necessary that
⋃m

i=1 Ji = I, otherwise the mutual key cannot be obtained. However,
this condition alone does not guarantee that the mutual key can be acquired easily. One main problem
is because the matrices P0,P1, . . . ,PN−1 are private and unknown to the outsider.

To overcome the problem, Eve needs to consider all public parameters before she try to recover the
key. The matrices Pi (0 ≤ i ≤ N − 1) are private, but fortunately for Eve, each of these matrices can be
expressed as Pi =Mαi where M is a public matrix and αi is a secret integer. Using this relationship,
we have

v
∏
k∈J

Pk = v
∏
k∈J

Mαk = vM
∑

k∈J αk , (45)

which possibly makes the mutual secret key recovery less complicated. If we assume that Eve gets m
vectors of the form wi = v

∏
k∈Ji

Pk with 1 ≤ i ≤ m, then by (45), each wi can be expressed
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as vM
∑

k∈Ji
αk . For brevity, we write

∑
k∈Ji

αk = xi. From theoretical perspective, the security of
Megrelishvili key distribution protocols in Section IV and Section V relates to the following problem.

Definition 1 (Multi-party Megrelishvili Shared Key Problem [1]) Suppose {J1,J2, . . . ,Jm} denotes
a collection of m non-empty proper subset of I = {0, 1, . . . , N − 1} and for each Ji (1 ≤ i ≤ m) we
define xi =

∑
k∈Ji

αk. The multi-party Megrelishvili shared key problem (MMSKP) is the problem of
determining the value vMx where x =

∑
k∈I αk from the know set {w1,w2, . . . ,wm} where each

wi = vMxi .

MMSKP is the problem of determining the mutual group key in Megrelishvili key distribution scheme
using known vectors obtained during the public (non-secure) messages transmission. This problem was
first discussed in [1]. It is obvious that in order to solve MMSKP, we must have

⋃m
i=1 Ji = I. However,

this condition alone is not always sufficient (see [1, Example 3] for more detailed explanation). One
palpable initial approach to solve MMSKP in Definition 1 is by solving m instances of MVMP. That is,
Eve solves wi = vMxi for the value of xi for all 1 ≤ i ≤ m. Subsequently, Eve tries to express x as a
real-valued function of x1, x2, . . . , xm. If we have x = f (x1, x2, . . . , xm) for some function f , then the
secret key is equivalent to vMf(x1,x2,...,xm). The problem of recovering the mutual key is now reduce
to finding an appropriate function f of m variables x1, x2, . . . , xm such that f (x1, x2, . . . , xm) = x.

We propose an elementary linear function that can be used to express x as a function of x1, x2, . . . , xm.
More precisely, our function f has the form

f (x1, x2, . . . , xm) = k1x1 + k2x2 + · · ·+ kmxm, (46)

for some real-valued scalars k1, k2, . . . , km. Thus, the secret exponent x can be recovered if x can be
expressed as a linear combination of x1, x2, . . . , xm, where each xi is the secret exponent that corresponds
to the equation wi = vMxi for some known vector wi. Observe that each xj with 1 ≤ j ≤ m can be
expressed as

xj = c0,jα0 + c1,jα1 + · · ·+ cN−1,jαN−1 =
N−1∑
i=0

ci,jαi (47)

where ci,j ∈ {0, 1} and some (but not all) ci,j equals to 1. Consequently, any subset Jj of the non-empty
subset collection {J1,J2, . . . ,Jm} corresponds to the secret exponent xj =

∑N−1
i=0 ci,jαi. Furthermore,

the non-empty subset collection {J1,J2, . . . ,Jm} corresponds to the set E = {x1, x2, . . . , xm} of secret
exponents extracted from m MVMP instances. We now have the following important results.

Lemma 2 Let E = {x1, x2, . . . , xm} =
{∑N−1

i=0 ci,jαi : ci,j ∈ {0, 1} ∧ (1 ≤ j ≤ m)
}

be the set of m

secret exponents extracted from the transmission among N participants P0, P1, . . . , PN−1. The mutual

group key vMx where x =
∑N−1

i=0 αi is recoverable from the set E if the equation

m∑
j=1

kj

(
N−1∑
i=0

ci,jαi

)
=

N−1∑
i=0

αi (48)

is solvable for kj (1 ≤ j ≤ m). In other words, the mutual key is recoverable if we can find the value

kj for 1 ≤ j ≤ m that makes (48) is satisfied.

Proof: The mutual key is recoverable if we can find scalar kj (1 ≤ j ≤ m) such that k1x1 + k2x2 +
· · ·+ kmxm = x, observe that

k1x1 + k2x2 + · · ·+ kmxm = x
m∑
j=1

kjxj =
N−1∑
i=0

αi

m∑
j=1

kj

(
N−1∑
i=0

ci,jαi

)
=

N−1∑
i=0

αi (by 47).
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�
If we expand kj

(∑N−1
i=0 ci,jαi

)
, then we have

kj

(
N−1∑
i=0

ci,jαi

)
= kj (c0,jα0 + c1,jα1 + · · ·+ cN−1,jαN−1) (49)

= kjc0,jα0 + kjc1,jα1 + · · ·+ kjcN−1,jαN−1. (50)

By substituting the expansion (50) to (48), we get
m∑
j=1

kj

(
N−1∑
i=0

ci,jαi

)
=

m∑
j=1

(kjc0,jα0 + kjc1,jα1 + · · ·+ kjcN−1,jαN−1)

= k1c0,1α0 + k1c1,1α1 + · · ·+ k1cN−1,1αN−1
+ k2c0,2α0 + k2c1,2α1 + · · ·+ k2cN−1,2αN−1
+ · · ·
+ kmc0,mα0 + kmc1,mα1 + · · ·+ kmcN−1,mαN−1,

which can be expressed as

m∑
j=1

kj

(
N−1∑
i=0

ci,jαi

)
= α0

⎛
⎝ m∑

j=1

kjc0,j

⎞
⎠+ α1

⎛
⎝ m∑

j=1

kjc1,j

⎞
⎠+ · · ·+ αN−1

⎛
⎝ m∑

j=1

kjcN−1,j

⎞
⎠

=
N−1∑
i=0

⎛
⎝ m∑

j=1

kjci,j

⎞
⎠αi. (51)

By Lemma 2, the mutual key is recoverable if we have

m∑
j=1

kj

(
N−1∑
i=0

ci,jαi

)
=

N−1∑
i=0

⎛
⎝ m∑

j=1

kjci,j

⎞
⎠αi =

N−1∑
i=0

αi. (52)

By matching the terms αi for 0 ≤ i ≤ N − 1 in (52), we have
m∑
j=1

kjci,j =

m∑
j=1

ci,jkj = 1 for all 0 ≤ i ≤ N − 1. (53)

The expression (53) can be expanded as follows

c0,1k1 + c0,2k2 + · · · + c0,mkm = 0
c1,1k1 + c1,2k2 + · · · + c1,mkm = 0

...
...

. . .
...

...
cN−1,1k1 + cN−1,2k2 + · · · + cN−1,mkm = 0

(54)

The system of equations in (54) can be expressed in matrix equation form:⎡
⎢⎢⎢⎣

c0,1 c0,2 · · · c0,m
c1,1 c1,2 · · · c1,m

...
...

. . .
...

cN−1,1 cN−1,2 · · · cN−1,m

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

k1
k2
...

km

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
1
1
...
1

⎤
⎥⎥⎥⎦ (55)

Ak = 1, (56)

where A = [ai,j ] is an N×m matrix over {0, 1} with ai,j = ci−1,j for all 1 ≤ i ≤ N and 1 ≤ j ≤ m, k
is a column vector of unknowns of size m, and 1 is a column vector of N ones. Therefore, the solvability
of the matrix equation (56) implies the recoverability of the mutual secret key. This stipulation leads to
a sufficient condition for the recoverability of the mutual secret key in connection with the collection of
secret exponents excerpted from the transmission.
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Theorem 3 Assume that the eavesdropper intercepts the message and excerpts the set

E = {x1, x2, . . . , xm} =
{

N−1∑
i=0

ci,jαi : ci,j ∈ {0, 1} ∧ (1 ≤ j ≤ m)

}

of m secret exponents from a key distribution scheme among N participants P0, P1, . . . , PN−1. Suppose

A = [ai,j ] is an N ×m matrix over {0, 1} with ai,j = ci−1,j for all 1 ≤ i ≤ N and 1 ≤ j ≤ m. Let

A′ be the N × (m+ 1) augmented matrix of the matrix equation (56). If the reduced row echelon form

of A′ contains no row of the form [0m ∗] where 0m denotes a submatrix of size 1 ×m and ∗ denotes

any nonzero value, then the mutual secret key is recoverable from the set E . Additionally, the sum of all

secret exponents of N participant can be expressed as a linear combination of the elements in E .

Proof: Suppose A = [ai.j ] is an N × m matrix over {0, 1} with ai,j = ci−1,j for all 1 ≤ i ≤ N
and 1 ≤ j ≤ m. From elementary linear algebra, the matrix equation Ak = 1 in (56) has a solution
for k if and only if the reduced row echelon form of the augmented matrix A′ = [A 1] has no row
of the form [0m ∗] where 0m is a submatrix of size 1 ×m and ∗ is any nonzero value. Accordingly,
the condition that A′ has no row of the form [0m ∗] implies that there are scalars k1, k2, . . . , km that
makes (48) is satisfied. By Lemma 2, the later condition implies that the sum of all secret exponents
of N participants can be expressed as a linear combination of m secret exponents excerpted from the
messages transmission. �

Theorem 3 provides a sufficient condition for recovering the mutual group key from several secret
exponents excerpted from the messages transmission. In particular, this theorem states a sufficient con-
dition for the sum of all private exponents α0, α1, . . . , αN−1 of N participants P0, P1, . . . , PN−1 to be
expressed as a linear combination of the secret exponents extracted from the messages during the public
transmission. From the aforementioned analysis, we see that MMSKP can be reduced to several instances
of MVMP, thus making MMSKP is not computationally harder than MVMP4. In addition, we conjecture
that an eavesdropper should be able to solve MVMP in order to solve MMSKP. Thus far, the fastest
known algorithm for solving MVMP still requires exponential number of scalar operations in terms of the
vector space dimension used [14]. By this assumption, we argue that the Megrelishvili key distribution
scheme is at least as secure as its two-party counterpart.

VII. CONCLUDING REMARKS

We have presented an extension of our previous work in [1] where we discuss the two first variations
of Megrelishvili key distribution scheme and some of their elementary theoretical security analysis.
In this article we introduce two different multi-party Megrelishvili protocols which are more efficient
than those two first schemes. We propose two efficient Megrelishvili key distribution protocols, i.e.: the
Megrelishvili key distribution with upflow-broadcast rounds and the Megrelishvili key distribution with
upflow-broadcast-response rounds. These two schemes allow simultaneous key retrieval for almost all
group members whilst maintaining the efficiency of the computational procedures involved. In addition,
both schemes support the group membership alteration protocols. That is, the protocols enable the group to
construct a new mutual secret key whenever a new member is added or an existing member is removed
without re-executing the protocols all over again. The comparison of important characteristics for all
Megrelishvili key distribution schemes described in Section IV is summarized in Table VII.

From Table VII, it can be derived that Megrelishvili key distribution scheme with upflow-broadcast-
response rounds is more superior than the other three schemes in terms of computational efficiency.
This protocol allows the group to agree on a mutual secret key using O (N) number of vector-matrix
multiplications where N is the group size. Moreover, this scheme requires no a priori synchronization
of the group members, yet it still supports simultaneous key retrieval for almost all participants (i.e., all
but one participant). Another important feature of this key distribution procedure is the easiness for the
implementation of membership alteration protocol.

4That is, the mutual secret vector can be obtained in polynomial number of scalar operations provided that appropriate secret
exponents are extracted from the messages during the public transmission.
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Generic U-D U-B U-B-R
total rounds (stages) N − 1 2 2 4

messages sent per member N − 1 2 or 1 1 2, 3, or 1
messages received per member N − 1 2 or 1 2 or 1 2, 3, or N
vector-matrix multiplications

per member Pi
N i+ 2 or N i+ 2 or N 3 or N

total messages N (N − 1) 2 (N − 1) N 2N
total vector-matrix multiplications N2

(
N2 + 3N − 2) /2 (

N2 + 3N − 2) /2 4N − 3
a priori synchronization Yes No No No

uniform computation Yes No No No
simultaneous key retrieval
for all/almost all members Yes No Yes Yes

efficient protocol
for membership alteration No No Yes Yes

TABLE VII: Comparison of the generic protocol, upflow-downflow (U-D) scheme, upflow-broadcast
(U-B) scheme, and upflow-broadcast-response (U-B-R) scheme.

One noticeable common characteristic of the key distribution with upflow-downflow rounds, upflow-
broadcast rounds, and upflow-broadcast-response rounds is the non-necessity of the synchronization before
the key exchange takes place. This characteristic also implies that the computational burden for each of
the group members can be differ from one to another. Moreover, the computational and communication
cost for each of the group members depend on its appearance in a linear order during the upflow round.

We have discussed some elementary security aspects of the Megrelishvili key distribution scheme.
We base our investigation on multi-party Megrelishvili shared key problem (MMSKP) and we provide a
mathematical relationship between MMSKP and MVMP. Specifically, we propose a method for solving
MMSKP by way of solving several MVMP instances. In this method, we give a sufficient condition for
recovering the mutual group key from several secret exponents excerpted from the messages transmission
in Theorem 3. More precisely, we show that the mutual group key can be recovered efficiently whenever
the sum of secret exponents of the participants can be expressed as a linear combination of the exponents
extracted from the messages transmission. Nevertheless, we do not know yet whether this sufficient
condition is also necessary in general approach of solving the MMSKP. Based on this analysis, we argue
that our protocols are at least as secure as the original two-party key exchange procedure. However, a
more rigorous theoretical research for the security of Megrelishvili key distributions still needs to be
conducted.
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