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Abstract 
Many problems in the scientific area and in the real world application are modeled as sparse 
matrix. Thus sparse matrices are very important and studied by many researchers. As these 
problems grow in scale, parallel computing resources are required to meet their computational 
needs. Coordinate List (COO) is one of sparse matrix’s formats. And SCOO format was developed 
by modified COO format and combined within an implementation using Compute Unified Device 
Architecture (CUDA)-architecture Graphics Processing Unit (GPU) to get better performance. 
This research addressed to evaluate the comparison of performance Sparse Matrix-Vector 
Multiplication (SpMV) using COO and SCOO format based on its memory usage and execution 
time. Results showed that although SCOO implementation for sparse matrix use memory 
1.000529 larger than COO format, its performance is around 123.8 faster than parallel COO or 77 
times faster than parallel COO using one of the available library for CUDA, named CUSP. 
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I. INTRODUCTION

n daily life, it is often to find problems which can be formulated into mathematics form for solving them. 
Its form is useful to solve real world problems using available mathematics formula. Matrix can be used to 

represent information from real world related to the problem that has been formulated into mathematics form. 
This representation method is commonly used in several cases which use graph as its data structure [7]. 
Matrix obtained from a graph can be dense or sparse. Generally, a lot of matrix which represents real world 
problems are sparse matrices. It is very large in size but information stored inside is relatively small, which 
cause bigger computational resource needs to do some calculation into those matrices [8]. Flight scheduling, 
social media, internet, image, etc has produced large-scale sparce matrices data which is very interesting to 
analyze. Sparse Matrix-Vector Multiplication (SpMV) is one of the most frequent operation performed to the 
sparse matrix and needs long enough time because of involving a lot of multiplication and addition operation 
to do [1]. 
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We consider linear system Ax = b. Many linear systems have a matrix A in which almost all the elements 
are zero, called sparse matrix. There are two general categories of numerical methods for solving Ax = b, 
Direct Methods and Iteration Methods. Sparse matrix-vector multiply (SpMV) is one of the most heavily used 
kernels in scientific computing. For a matrix A of order n × n, it will need 4n2 bytes to store it in single 
precision. Thus a matrix of order 10.000 will need around 375 MB of storage. It would be too large to be 
stored in the computer’s memory, and take long computational time. Large-scale matrices mean large 
memory, large bandwidth, and long computational time. 

Hence sparse matrix usually stored in special format to store information that is sparse, such as Diagonal 
(DIA), Ellpack (ELL), Compressed Sparse Row (CSR), Coordinate List (COO), Coordinate List (COO), 
which expects reduced storage needed and improved operation performance to those matrices. Hoang-Vu 
Dang introduces a new sparse matrix format which is a modification of COO format, named Sliced 
Coordinate List (SCOO) [1]. SCOO accelerate the performance of SpMV implementation [1]. 

CUDA (Compute Unified Device Architecture) is a programming model and a computational platform 
developed by NVIDIA. CUDA allows software developers to utilize NVIDIA GPU (Graphics Processing 
Unit) to accelerate the process of computing. GPU has a great resource with thousand of cores and increasing 
every year. GPU CUDA allows us to solve the problem with huge data in parallel. CUDA programming 
models architecture as if  SIMD (Single Instruction Multiple Data) parallel arcitecture. So CUDA is suitable 
for large computational problem with large data and less intruction such as matrix, graph, array ect. CUSP is a 
library for C/C ++ programming language. CUSP is an open-source like a generic parallel algorithms for 
sparse linear algebra and graphs computation in GPU with CUDA architecture 

In this research, we evaluated the performance and memory usage of SpMV using COO and SCOO format. 
We campared serial COO, parallel COO using CUDA, parallel COO using CUSP, serial SCOO, and parallel 
SCOO. 

 

II. LITERATURE REVIEW 

A. Sparse Matrix 

Matrix is an arranged entries, rectangular shape which placed in horizontal row and vertical column. 
Entries from a matrix is called element. Matrix symbol is in bold uppercase letter and element symbol is in 
lowercase letter. Two subscript put near the element to denote its position in the matrix, first subscript denote 
the row position and second subscript denote the column position [2]. 

For example, suppose a matrix as follows: 

! =
1 7
0 2

0 0
8 0

5 0
0 6

3 9
0 4

 

Matrix A has 4 rows and 4 columns with 16 elements. From A, it can be known that !!! = 1, !!" = 7, etc. 

Matrix which contain a lot of zero elements is called sparse matrix. If a matrix is sparse then it is possible to 
exploit its characteristics to reduce size or to shorten computational time needed to do basic linear algebra 
operation by avoiding storing zero value element and computational to the zero value element [3].  

 

 

 



 

 

There are some commonly used sparse matrix format, such as: 

1. Diagonal (DIA)  

DIA format is suitable to represent sparse matrix which its non-zero entries are limited to the diagonal 
of the matrix [3]. DIA formed by two array: data array – to store non zero values, and offsets array – to 
store each diagonal distance to the main diagonal. Diagonal which is over the main diagonal is positive, 
while diagonal below the main diagonal is negative. 

As an example, DIA format for matrix A is: 

!"#" =
∗
∗

1 7
2 8

5
6

3 9
4 ∗

 !""#$%# = −2 0 1  

2. Ellpack (ELL)  

ELL is a more general form of DIA format and it is suitable for matrix which its architecture is like 
vector. An M × N-sized matrix with a maximum of K non-zero values in each row can be stored as a 
dense matrix with a size of M × K non-zero data array and indices array as an index of column. 

As an example, ELL format for matrix A is: 

!"#" =
1
2

7 ∗
8 ∗

5
6

3 9
4 ∗

 !"#!$%& =
0
1

1 ∗
2 ∗

0
1

2 3
3 ∗

 

 
3. Compressed Sparse Row (CSR)  

CSR is the most popular multifunction sparse matrix representation. Like ELL format, CSR store 
column indices to indices array and non-zero values to data array. Third array, ptr, is a row marker 
which make CSR format possible to represent varying length of row. 

As an example, CSR format for matrix A is: 

!"# =  0 2 4 7 9  
!"#!$%& = 0 1 1 2 0 2 3 1 3  
!"#" = 1 7 2 8 5 3 9 6 4  

4. Coordinate List (COO)  

COO format is the simplest storing scheme. COO use row, indices, and data array, each store row 
indices, column indices, and non-zero values. 

As an example, COO format for matrix A is: 

!"# = 0 0 1 1 2 2 2 3 3  
!"#!$%& = 0 1 1 2 0 2 3 1 3  
!"#" = 1 7 2 8 5 3 9 6 4  

5. Sliced Coordinate List (SCOO)  

SCOO format is a modified version to the current COO sparse matrix format. SCOO format also store 
row and column indices for each non zero entries like COO format, but SCOO format is sorted by 
column indices so entries placed in the same column are stored adjacently [3]. By moving entries 



 

which has identical column index together in an increasing order, SCOO expected to maximize regular 
access to the input vector which can increase performance [1].  

This below SCOO format for matrix A with slice size = 2. In SCOO format, there is slice size terms 
which mean how many a matrix is divided by the amount of its row. Besides that, there is an index 
array which is not exists in COO format. Index array store the next entries order values when changing 
slice. 

1 7 0 0 
0 2 8 0 
5 0 3 9 
0 6 0 4 

!_!"#$% = 0 1 1 2   | 0 1 2 3 3  
!_!"#$% = 0 0 1 1   | 2 3 2 2 3  
!"#$% =     1 7 2 8   | 5 6 3 9 4  

!"#$% = 0 4  
 

So, for specific matrix, there is a preferred format which more suitable to its sparsity pattern rather 
than the other format. Bell identify sparsity pattern of a matrix into three types, which is: diagonal 
matrix, matrix with more or less same amount of row length, and those who are not. Each sparse 
pattern has its best format which is different between each other [3].. 

B. Vector  

Vector is a mathematics form to represent a magnitude which has values and direction [6]. Vector denoted 
by a lowercase letter with an arrow sign on the top of the letter For example ∶  !, ! . Vector can be 
represented by a column matrix which has m × 1 size [4]. As an example, suppose ! = 2! − 3! , then its 
vector can be written in a matrix form, for example matrix ! = 2

−3 . 

C. Sparse Matrix-Vector Multiplication  

If A is an m x n-sized input matrix, ! is an n × 1-sized input vector, ! is an m × 1-sized output vector, and 
γ is an amount of non-zero entries from A, then operation of multiplication between matrix and vector can 
be written as ! = !. ! [3]. The only requirement to do the operation is the amount of column in matrix A 
must be equal to the amount of element in vector x. 

The algorithm to do the matrix-vector multiplication is as follows [1] : 

Input: !: ! ! !-sized matrix ; x: input vector 
Output: ! ← !. ! 
for ! ← 0 to ! − 1 do 
 ![!] ← 0 for each non-zero entries at row !, column ! do 
  ! ! ← ! ! + ! ! !  x ! !  
 end for 
end for 

 

  



 

III. SYSTEM DESIGN 
 

In this research, a system which is able to utilize NVIDIA GPU with CUDA will be created to do SpMV 
operation. This system refers to the efficient SpMV computational algorithm which use the power of GPU to 
do the calculation. 

System designed as an overview consists of two main processes. The first step is to convert the matrix data 
which are used as an input to the COO and SCOO sparse matrix format. The second step is the process of 
multiplication between sparse matrix and vector. Fig. 1 below show the design of our system. 

 
Fig. 1. SpMV Implementation System Design 

A. SpMV Dataset 

Dataset which will be used as an input matrix at the SpMV operation were obtained from the University 
of Florida Sparse Matrix Collection website [2]. This website provide sparse matrices in three different 
formats which is free to download, those formats are MATLAB, Rutherford/Boeing, and Matrix Market. 
However, the system designed is only able to handle sparse matrix format presented in Matrix Market 
(.mtx) format. The other format, MATLAB is a binary file and its usage is specific for the MATLAB 
application and Rutherford/Boeing format is nearly identical to the dense matrix because it is presented 
in the full-formed matrix which is elongated and widened. 

We used 10 sparse matrices, which are considered to represent a lot of real world problems. Table 1 
shows the description of 10 sparse matrices. 
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TABLE I 
DATASET USED IN SYSTEM DESIGNS 

Name Amount 
of Row 

Amount 
of 

Column 

Amount of 
Non-Zero 

Entry 

Sparsity 
Level Problem/Description 

olafu 16.146 16.146 1.015.156 0,389406% Structural problem 

gyro 17.361 17.361 1.021.159 0,3388% Model reduction 
problem 

gyro_k 17.361 17.361 1.021.159 0,3388% Duplicate model 
reduction problem 

Rim 22.560 22.560 1.014.951 0,199419% Computational fluids 
dynamics problem 

IG5-17 30.162 27.944 1.035.008 0,122799% Combinatorial 
problem 

case39 40.216 40.216 1.042.160 0,064437% Electrical network 
problem order 

dawson5 51.537 51.537 1.010.777 0,038055% Structural problem 

Dubcova2 65.025 65.025 1.030.225 0,024365% 2D/3D problem 

torso2 115.967 115.967 1.033.473 0,007685% 2D/3D problem 

pds-90 142.823 475.448 1.014.136 0,001493% Linear programming 
problem 

 

For the vector that will be used in SpMV operation, it will use one as default entries. Beside that, the 
vector dimension must be equal to the amount of column of the sparse matrix to do the SpMV operation.  

B. Convert to Sparse Matrix 

There are two sparse matrices format that used in the designed system, COO and SCOO. Input matrix file 
which is in .mtx type will be converted to those sparse matrix format before doing the SpMV operation. 
We used below algorithm to modified COO become SCOO.  

Input : A {Matriks COO}, ss {Slice Size} 
Output : B {Matriks SCOO} 
ptr ß 0 
B.idx[0] ß 0 
for   i ß 0 to (A.jml_baris / ss) do 
 for j ß 0 to A.jml_entri do 

if ((A.idx_baris[j] >= (i*ss)) and (A.idx_baris[j] < (i*ss + ss))) then 
B.idx_kolom[ptr] ß A.idx_kolom[j] 
B.idx_baris[ptr] ß A.idx_baris[j] 
B.entri[ptr] ß A.entri[j] 
ptr ß ptr + 1 

endif 
B.idx[i + 1] ß ptr 

endfor 
endfor 
 

 

 



 

C. SpMV Operation 

Multiplication operation between sparse matrix and vector is different from the general matrix 
multiplication, because sparse matrix is represented in different format, in this case COO and SCOO. 
SpMV process will be conducted in parallel using CUDA at NVIDIA GPU and for the COO sparse 
matrix format, CUSP library will be used to help SpMV process. 

D. Performance Evaluation 

This process evaluate the performance result obtained from the SCOO sparse matrix format to its 
predecessor, COO, from the side of execution time needed to do the SpMV operation by both sparse 
matrix format and its memory usage to store matrix data in COO and SCOO format. We used personal 
computer with specifies below: 

TABLE II 
COMPUTER SPECIFICATION 

Hardware 
Processor Intel Core i7-4770K @3.5 Ghz 
RAM 8 GBs 
HDD 1 TB 
GPU NVIDIA GeForce GTX 750 Ti 
Software 
Operating System Microsoft Windows 10 64-bit 
CUDA Tools Kit CUDA v7.5.18 

Visual Studio Community 2013 64-
bit 

CUDA Library CUSP 0.5.1 
 

IV. TESTING  RESULTS AND ANALYSIS 

We use CPU and GPU with specifies as Table II in our experiments. The following Table III shows the 
results of experiments about  sparse matrices memory usage that used dataset on Table I. Memory usage is 
memory space that used to store matrix information.  

 
TABLE III 

SPMV IMPLEMENTATION RESULTS BASED ON ITS MEMORY USAGE (BYTE) 

Matrix Name Dense COO SCOO 
Olafu 1.042.773.248 12.181.872 12.183.896 
Gyro 1.205.617.280 12.253.908 12.256.084 
gyro_k 1.205.617.280 12.253.908 12.256.084 
Rim 2.035.814.400 12.179.412 12.182.236 
IG5-17 3.371.387.648 12.420.096 12.423.872 
case39 6.469.306.368 12.505.920 12.510.952 
dawson5 10.624.249.856 12.129.324 12.135.772 
Dubcova2 16.913.002.496 12.362.700 12.370.836 
torso2 53.793.382.400 12.401.676 12.416.176 
pds-90 271.619.637.248 12.169.632 12.187.492 



 

Based on the results above, it shows that the matrices representation in dense format has the highest 
memory consumption. The best matrices representation for the least memory usage is COO format but just a 
little different with SCOO format. The memory consumption of COO format can be reduced until 99.54242% 
and  99.54232% when using SCOO format, compared to the dense format. So it is important to store sparse 
matrices in the specially designed form, such as COO and SCOO. 

In this research, we compare SpMV using COO and SCOO format on CPU and GPU.  We execute serial 
SpMV implementation for both sparse matrices format, parallel SpMV implementation for COO format, 
parallel SpMV implementation using CUSP library for COO format, and parallel SpMV implementation for 
SCOO format. For the implementation using dense matrix format can not be conducted because of the 
limitation of the devices used to handle very large memory needed. 

Computational time needed for each data as of the dataset in the Table I to execute SpMV within the 
implementation as described above can be viewed on the following Table IV. 

 
TABLE IV 

SPMV IMPLEMENTATION RESULT BASED ON ITS EXECUTION TIME (IN MILLISECONDS) 

Matrix Name Serial 
COO 

Parallel 
COO 

Parallel COO 
with CUSP 

Serial 
SCOO 

Parallel 
SCOO 

olafu 3.59 1.22 0.77 1.05 0.01 
gyro 3.67 1.26 0.8 1.09 0 

gyro_k 3.7 1.25 0.74 1.12 0.01 
Rim 3.55 1.21 0.77 1.1 0.01 

IG5-17 3.73 1.26 0.79 1.15 0 
case39 3.69 1.3 0.78 1.08 0.01 

dawson5 3.54 1.09 0.73 1.1 0 
Dubcova2 3.74 1.21 0.79 1.15 0.01 

torso2 3.68 1.25 0.76 1.13 0 
pds-90 3.63 1.19 0.98 1.69 0 

 

Based on the table above, it can be seen that serial SCOO implementation gives an enhanced performance 
around 3.18 times faster than serial COO implementation. Besides that, parallel SCOO implementation results 
is 123.8 times faster than parallel COO implementation or 77 times faster than parallel COO implementation 
using CUSP library. 

 

 

 

 

 

 



 

 
V. Conclusion 

The implementation SpMV in COO and SCOO format using CUDA-architecture GPU show that storing 
matrix in COO format can reduce memory usage around 99.5424216% less than dense matrix format and 
around 99.54232% if using SCOO format. It also gives speed up as shown the table below. 

 
TABLE V 
SPEED UP 

  Speed Up 
Serial COO Serial SCOO 3.18 
Parallel COO Parallel SCOO 123.8 
COO + CUSP Parallel SCOO 77 

Although implementing in SCOO need more memory space needed than COO memory usage, the speed up 
is more significant to consider. The increasing of performance is obtained from the index array which exists 
in SCOO format that make access to the specified matrix element located in the same slice faster. So finding 
matrix element in the certain position can be done without iterating from the first part of the matrix. 

To develop this system in the future, some suggestions are listed below which can be used as the parameter 
to create the new system which has a better performance, which is: 

A. Make SCOO as one of the most commonly used sparse matrix format to store sparse matrix, so it 
does not need to convert the matrix from another format to SCOO anymore. 

B. Test the existing system design using larger dataset with better devices, so measuring the time 
needed to perform SpMV operation using SCOO format in parallel way can be more measurable and 
reliable compared to the other SpMV implementation 
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