SOC Press, Indonesia Symposium on Computing (IndoSC) 2016

Font Size: 
Analisis dan Klasifikasi Opini pada Porduct Review Menggunakan Metode Semi-Supervised
annisa Imadi Puti, Warih Maharani, Mochammad Arif Bijaksana


Full Text: PDF

Abstract


Review produk merupakan informasi penting bagi konsumen dan produsen. Bagi konsumen, review sering dijadikan sebagai referensi dan acuan untuk mengambil keputusan. Jumlah review produk yang banyak membuat isi review tidak dapat disimpulkan dengan cepat dan tepat. Untuk mengatasi masalah tersebut, diperlukan suatu sistem yang secara otomatis dapat mengidentifikasi fitur-fitur dan review dan mengklasifikasikannya ke dalam polaritas positif atau negatif. Penilitian tugas akhir ini dilakukan untuk menganalisis klasifikasi dari review produk. Sebelum memasuki analisis klasifikasi, penelitian dimulai dari proses ekstraksi fitur menggunakan metode type dependency parser, identifikasi noun phrase parser dan AER. Fitur hasil ekstraksi kemudian dilihat polaritas opininya menggunakan metode semi-supervised dengan melakukan pembangunan graph berbasis lexicon berisi kata-kata opini positif-negatif yang dikembangkan sinonimnya.

Reference


[1] Ly, D. K., Sugiyama, K., Lin, Z., & Kan, M. Y. (2011). Product review summarization based on facet identification and sentence clustering. arXiv preprint arXiv:1110.1428.

[2] Manning, C. D. (2011, February). Part-of-speech tagging from 97% to 100%: is it time for some linguistics?. In International Conference on Intelligent Text Processing and Computational Linguistics (pp. 171-189). Springer Berlin Heidelberg. Crossref

[3] Covington, M. A. (2001). A fundamental algorithm for dependency parsing. In Proceedings of the 39th annual ACM southeast conference (pp. 95-102).

[4] Jiawei Han and Micheline Kamber, Data Mining Concepts and Techique Second Edition. San Fransisco: Morgan Kaufmann Publishers, 2006.

[5] Francis, L., & Flynn, M. (2010). Text mining handbook. In Casualty Actuarial Society E-Forum (p. 1).

[6] Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and trends in information retrieval, 2(1-2), 1-135. Crossref

[7] Korenius, T., Laurikkala, J., Järvelin, K., & Juhola, M. (2004, November). Stemming and lemmatization in the clustering of finnish text documents. In Proceedings of the thirteenth ACM international conference on Information and knowledge management (pp. 625-633). ACM. Crossref

[8] Blanchard, A. (2007). Understanding and customizing stopword lists for enhanced patent mapping. World Patent Information, 29(4), 308-316. Crossref

[9] Joakim Nivre and Sandra Kubler, "Dependency Parsing Tutorial at COLING-ACL," 2006.

[10] De Marneffe, M. C., & Manning, C. D. (2008). Stanford typed dependencies manual (pp. 338-345). Technical report, Stanford University.

[11] Liu, Q., Liu, B., Zhang, Y., Kim, D. S., & Gao, Z. (2016, March). Improving Opinion Aspect Extraction Using Semantic Similarity and Aspect Associations. In Thirtieth AAAI Conference on Artificial Intelligence.

[12] Miller, G. A., Beckwith, R., Fellbaum, C., Gross, D., & Miller, K. J. (1990). Introduction to WordNet: An on-line lexical database. International journal of lexicography, 3(4), 235-244. Crossref

[13] Hu, M., & Liu, B. (2004, August). Mining and summarizing customer reviews. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 168-177). ACM.

[14] Moghaddam, S., & Popowich, F. (2010). Opinion polarity identification through adjectives. arXiv preprint arXiv:1011.4623.

[15] Li, S., & Jiang, Y. (2013). Semi-supervised Sentiment Classification using Ranked Opinion Words. learning, 6(6). Crossref

[16] Saleh, M. R., Martín-Valdivia, M. T., Montejo-Ráez, A., & Ureña-López, L. A. (2011). Experiments with SVM to classify opinions in different domains. Expert Systems with Applications, 38(12), 14799-14804. Crossref

[17] Balakrishnan, V., & Lloyd-Yemoh, E. (2014). Stemming and lemmatization: a comparison of retrieval performances. Lecture Notes on Software Engineering, 2(3), 262. Crossref

Last modified: 2016-11-02