SOC Press, Indonesia Symposium on Computing (IndoSC) 2016

Font Size: 
Implementasi dan Analisis Sederhana Protokol Megrelishvili pada Bahasa Pemograman Java
Fahmi Alfiansyah


Full Text: PDF

Abstract


Protokol pertukaran kunci Megrelishvili sudah ditemukan pada tahun 2006, namun implementasi praktis penggunaan protokol tersebut masih belum dipelajari secara mendalam. Makalah ini membahas implementasi protokol dalam bahasa java menggunakan parameter kunci publik yang optimal. Perancangan sistem ini disajikan dalam bentuk UML. Selain itu, kami melakukan eksperimen numerik untuk menganalisis waktu eksekusi dan kebutuhan memori pada protokol Megrelishvili. Dari hasil eksperimen yang dilakukan, diperoleh dua hal penting. Pertama, ukuran matriks yang digunakan berbanding lurus dengan waktu dan jumlah memori. Kedua, ukuran Galois Field yang digunakan berbanding terbalik dengan waktu, namun berbanding lurus dengan jumlah memori.

Reference


[1] Arzaki, M., & Wahyudi, B. A. (2016, May). On the construction of secure public parameters for Megrelishvili protocol. In Information and Communication Technology (ICoICT), 2016 4th International Conference on (pp. 1-5). IEEE. Crossref

[2] Arzaki, M. (2016). Elementary Algorithms Analysis of Megrelishvili Protocol. Indonesian Journal on Computing (Indo-JC), 1(1), 11-23. Crossref

[3] Niven, I. (1948). Fermat’s theorem for matrices. Duke Mathematical Journal, 15(3), 823-826. http://dx.doi.org/10.1215/S0012-7094-48-01574-9

[4] Lidl, R., & Niederreiter, H. (1994). Introduction to finite fields and their applications. Cambridge university press. Crossref

[5] Hoffstein, J., Pipher, J., Silverman, J. H., & Silverman, J. H. (2008). An introduction to mathematical cryptography (Vol. 1). New York: springer.

[6] Horn, R. A., & Johnson, C. R. (2012). Matrix analysis. Cambridge university press. Crossref

[7] Megrelishvili, R., Chelidze, M., & Chelidze, K. (2006). On the construction of secret and public-key cryptosystems. Appl. Math., Inform. Mech, 11(2), 29-36.

[8] Diffie, W., & Hellman, M. (1976). New directions in cryptography. IEEE transactions on Information Theory, 22(6), 644-654. Crossref

[9] Megrelishvili, R., & Sikharulidze, A. (2009, June). New matrix sets generation and the cryptosystems. In Proceedings of the European Computing Conference and Proceedings of the 3rd International Conference on Computational Intelligence, Tbilisi, Georgia (pp. 253-253).

[10] Megrelishvili, R. (2011). On the original one-way function and the new digital signature scheme. Applied Mathematics, Informatics and Mechanics (AMIM), 16(1), 43-48.

[11] Beletsky, A., Beletsky, A., & Kandyba, R. (2013). Matrix Analogues of the Diffie-Hellman Protocol. In ICTERI (pp. 352-359).

[12] Megrelishvili, R., Chelidze, M., & Besiashvili, G. (2010, September). Investigation of new matrix-key function for the public cryptosystems. In Proceedings of The Third International Conference, Problems of Cybernetics and Information (Vol. 1, pp. 6-8).

[13] Saxena, N. R., & McCluskey, E. J. (2004). Primitive polynomial generation algorithms implementation and performance analysis. Dept. Electr. Eng., Stanford CRC, Stanford, CA, USA, Tech. Rep, 04-03.

Last modified: 2016-11-02